This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3371788

SPT: Security Policy Translator for Network
Security Functions in Cloud-Based Security
Services

Patrick Lingga, Student Member, IEEE, Jachoon (Paul) Jeong, Member, IEEE, Jinhyuk
Yang, Student Member, IEEE, and Jeonghyeon Kim, Student Member, IEEE

Abstract—Interface to Network Security Functions (I2NSF)
Working Group within Internet Engineering Task Force (IETF)
has developed a framework and its interfaces with YANG data
models for configuring Network Security Functions (NSF). These
models include a high-level security policy (i.e., an overview of
configuration) and a low-level security policy (i.e., a detailed and
specific configuration) to facilitate the configuration of NSFs. In
this paper, a Security Policy Translator (SPT) is proposed to
translate high-level security policies created by users into the
corresponding low-level security policies. It leverages the design
of I2NSF YANG data models to accurately translate security
policies. The SPT performs a translation by extracting the high-
level security principles using Deterministic Finite Automaton
(DFA) construction from the high-level YANG data model. It
converts the extracted information to a low-level form by utilizing
a mapping model created by comparing the two YANG data
models, such as the Consumer-Facing Interface (CFI) and NSF-
Facing Interface (NFI) YANG data models. It selects the optimal
NSFs based on the security policies to provide maximum security
performance. It generates low-level security policies for the NSFs
to deploy the security services. The proposed approach allows
security policy translation for the I2NSF framework with high
accuracy and speed.

Index Terms—Network management, network security, net-
work automation, I2NSF, policy translator.

I. INTRODUCTION

The rapid development of computer networks in recent years
has changed the way people live, work, and communicate.
With the introduction of the 5G networks, the availability
and quality of the Internet have reached a new level. Sharing
information over the Internet is a normal practice for most
of the world’s population. There are many types of services
available on the Internet, such as e-commerce, social media,
online entertainment, and messaging. The great convenience
of the Internet makes more and more users take advantage
of those types of services. According to DataReportal [1], the
number of Internet users has recently reached 5 billion people,
which is equivalent to 63% of the entire world population. The
number of users has grown by almost 200 million over the last
year and continues to grow at a rate of 4% per year.

P. Lingga and J. Yang are with the Department of Electrical and Computer
Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
(E-mail: {patricklink, jin.hyuk} @skku.edu)

J. Jeong (as the corresponding author) and J. Kim are with the Department
of Computer Science and Engineering, Sungkyunkwan University, Suwon
16419, Republic of Korea. (E-mail: {pauljeong, jeonghyeon12} @skku.edu)

The increase in online activity has also led to a sprout
of new businesses and industries, many of which operate
exclusively or primarily online. This increase creates signif-
icant opportunities for entrepreneurs and organizations, but
also brings new risks and challenges. Most companies start
to focus on their core business plans without considering
the security aspects of their systems. A growing number
of online businesses are vulnerable to risks and dangers on
the Internet as more and more users access their services.
Unfortunately, many smaller businesses may not have the re-
sources to adequately protect themselves against these security
threats. In fact, a recent report found that only 8% of small-
sized businesses and 14% of medium-sized businesses have a
dedicated cybersecurity budget to focus on handling security
risks [2]. This presents a major challenge, as these companies
are often targeted by cyberattacks due to their vulnerabilities.

Moreover, with the development of technology, the meth-
ods used by cybercriminals to breach network security are
changing. This means that companies need to stay up-to-date
with the latest threats and invest in new security measures
accordingly. However, this requirement is often easier said
than done. In many cases, companies may not have the nec-
essary knowledge or resources to keep pace with the rapidly
changing landscape of network security management. Even
with the proper skills and resources, implementing and man-
aging Network Security Functions (NSF) can be a complex
and daunting task, because a number of NSFs’ features and
functions are supported by multiple security vendors and open-
source technologies. Hence there is a need for a framework
that integrates and translates business requirements without the
need for a deeper understanding of network security. Interface
to Network Security Functions (I2NSF) Working Group (WG)
of the Internet Engineering Task Force (IETF) proposed a
framework for users to control and manage network security
services that are enforced by multiple security functions from
different vendors or open-source technologies [3]. It provides
businesses with an opportunity to manage network security in
a more user-friendly and cost-effective way.

The I2NSF WG aims to provide a set of software interfaces
and relevant data models based on YANG [4] to manage NSFs’
aspects in an accessible manner for the users. To manage the
NSFs, the user has the ability to specify rules, query, and
monitor NSFs. In order to simplify the rule-set specification
for the users, I2NSF provides two configuration interfaces and
data models, which are used to construct and deliver a high-

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on March 04,2024 at 06:19:59 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3371788

level security policy and a low-level security policy. A high-
level security policy is a comprehensible and less-detailed set
of rules expressed directly by an I2NSF User. A low-level
security policy is a detailed rule set with specific configuration
information that is used by the NSFs to provide network
security services.

But in the practical aspect, the I2NSF Framework needs an
automated translator that translates the user’s high-level secu-
rity policy accurately and consistently, eliminating the possi-
bility of misinterpretation or oversight. In real-world scenarios,
networks are becoming increasingly complex, especially in
large-scale networks where numerous security policies are in
place. An automated translator plays an important role in
simplifying this complexity and enhancing the efficiency of
network security management. It helps the maintenance of a
robust security posture and ensures that the NSFs work as
intended, adhering to the specified high-level security policy.

Firstly, automation in finding mappings between high-level
security policies and low-level security policies significantly
reduces the burden on users. In practical terms, this means that
network administrators do not need to delve into the intricate
details of every security rule. Instead, they can express their
security requirements at a higher level of abstraction, making
the entire process more user-friendly. This simplification is
especially relevant in large-scale networks where managing
numerous security policies can be overwhelming.

Secondly, optimizing algorithms for NSF provisioning
through automation ensures the efficient utilization of network
resources. In real-world scenarios, networks often operate
under constraints such as limited bandwidth and computational
power. The optimizing algorithms help the allocation of these
resources fairly based on the translated security policies.
Thus, this optimization is essential for ensuring that security
services are delivered promptly without compromising the
overall network performance.

Therefore, in this paper, we proposed a Security Policy
Translator (SPT) to simplify the management of NSFs to offer
tangible benefits for maintaining secure and efficient networks.
The main contributions of this paper for the Security Policy
Translator (SPT) from a high-level security policy to a low-
level security policy are as follows:

« An automatic mapper between the high-level and low-
level YANG data models: SPT handles the automatic
mapping of the two YANG data models, providing model
mapping suggestions. Its implementation leverages the
design similarity of the high-level and low-level YANG
data models to find the accurate mapping between the two
models based on the Zhang-Shasha algorithm [5]. The
proposed mapper significantly reduces human involve-
ment in the translation process through dynamic mapping
of the elements (see Section IV-A).

¢ A Deterministic Finite Automaton (DFA)-based se-
curity policy extraction: SPT constructs a DFA from
a high-level YANG data model to precisely extract and
validate the user security policies. In real-world scenarios,
the data models often need to be adjusted or extended to
respond to changing threats and compliance requirements.
This DFA allows the flexibility to manipulate the YANG

data model without the need for manual interruption (see
Section IV-B).

« An optimized NSFs selection: SPT selects a set of
NSFs that can automatically deliver security services
requested by the I2NSF User without any knowledge
of the network architecture. The optimization of security
service implementations is highly valuable in real-world
networks that are very dynamic and diverse (see Section
IV-C).

o An evaluation of the proposed approaches: SPT is
evaluated by measuring different performance indicators
for each proposed component in the SPT. It is evaluated
against a number of parameters to find out the potential
of the proposed approach for the translation of security
policies. SPT’s evaluation process ensures that it can be
continuously improved to meet the evolving challenges
in the future (see Section V).

The remainder of this paper is organized as follows. In
Section II, related work is summarized along with analysis.
Section III discusses the framework and a target scenario used
to formulate the problem. Section IV describes in detail the
proposed approach for translating a high-level security policy
to the corresponding low-level security policy. In Section V,
we evaluate our proposed SPT on its components using a
variety of evaluation methods. Finally, Section VI concludes
this paper along with the discussion of future research.

II. RELATED WORK

The number of devices and networks utilizing cloud tech-
nology increases, making traditional manual methods of man-
aging and configuring policies on networks gradually more
difficult. As a result, Intent-Based Networking (IBN) technol-
ogy is gaining prominence as a way to easily manage networks
based on a user’s intent.

However, natural language expressions of the intent cannot
be used directly to configure networks, hence intent translation
is required. Therefore, the abstract intent must be translated
into low-level network policies that network devices can un-
derstand, and this technology is essential in IBN [6]. Research
is actively conducted on translating an intent expressed in
a natural language into network policies based on Natural
Language Processing (NLP) to reflect an abstract user intent
in the network.

In addition, demand for IBN services in the field of cloud
network security is increasing, and research in this area is also
actively conducted. The IETF proposed NETCONF to manage
various heterogeneous network devices based on user intent,
using YANG [4] for data modeling. In [3], a standard has
been proposed for managing and controlling various network
security functions (called NSF) created by different vendors
in a Software-Defined Network (SDN) cloud environment.
To manage heterogeneous IBN-based network devices in the
I2NSF framework, it is essential to translate a high-level
security policy (i.e., a user’s intent) into the corresponding
low-level security policy.

The IBCS framework [7] has been proposed for the efficient
management of heterogeneous NSFs used to mitigate various

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on March 04,2024 at 06:19:59 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3371788

Security Client

I12NSF User
o

Consumer-Facing Interface

v

Security Management System

Security
Controller

A

) Developef s
Management
System (DMS)

Registration
Interface

NSF-Facing Interface

Security Network

0%
o
Y
A
\ 4

NSF 1 NSF 2

Client

NSF: Network Security Function (e.g., Firewall, URL Filtering, Deep Packet Inspection, Antivirus)

NSF 3 NSF 4

Server

Fig. 1. I2NSF Framework

security issues that arise in intent-based cloud service envi-
ronments and to process a user security intent. The authors
translate high-level security policies received from users into
low-level security policies that NSFs with the corresponding
capabilities can understand to provision the corresponding
security services by using a security translator within a security
controller. In [7], the authors used a semi-automatic mapping
method. Also, the NSFs selection is done without considering
the optimal selection.

In [8], network slicing was implemented using IBN in a
5G environment. The user’s intent related to network slicing
was an input in Graphical User Interface (GUI) as a template,
and the input high-level policy related to network slicing was
mapped into the required format for configuration using a
knowledge-based Policy Store. This method also went through
a policy translation process that involves a one-to-one match-
ing of , rather than a separately calculated algorithm.

However, in our paper, we have added a data model
mapper with Zhang-Shasha algorithm to calculate the Tree
Edit Distance between the high-level security policy YANG
data model and the low-level security policy YANG data
model. In addition, we have implemented an optimal policy
provisioning which can select the appropriate NSFs that can
provide the required security services. In this way, we can
achieve the conversion of a high-level security policy to a
low-level security policy and automatically select the optimal
NSFE(s).

III. PROBLEM FORMULATION

Interface to Network Security Functions (I2ZNSF) Working
Group (WG) of Internet Engineering Task Force (IETF) pro-
posed a framework for users to control and manage NSFs
by specifying rule sets. Fig. 1 illustrates the architecture of
the I2NSF Framework [3]. It consists of four components and
three interfaces. The components of the I2NSF Framework
are:

e I2NSF User: A user of the I2NSF Framework that
specifies the rule-sets for the NSFs to configure the
security services. The rule sets are served as high-level
security policies, i.e., configuration information that is
easy for the non-security expert to understand.

o Security Controller: An application that controls and
manages the NSFs through specific rule-sets created by
I2NSF Users. It is also responsible for translating the
high-level security policies to the corresponding low-level
security policies to activate the appropriate NSFs.

« Developer’s Management System (DMS): A vendor’s
system that provides NSFs for virtualized security ser-
vices. It registers the available NSFs and their capabilities
with the Security Controller.

o Network Security Functions: Virtualized network in-
stances that detect and mitigate threats to ensure integrity,
confidentiality, or safe operation of network communi-
cations. It accepts low-level security policies from the
Security Controller to provide security services.

I2NSF WG connects the components in the I2NSF Frame-
work with standardized interfaces. The interfaces are designed
with various YANG [4] data models and implemented using
either NETCONF [9] or RESTCONF [10]. The I2NSF inter-
faces are as follows:

o Consumer-Facing Interface (CFI): An interface for
delivering high-level security policies from the I2NSF
User to the Security Controller. The CFI YANG data
model [11] is designed to resemble a human natural
language as closely as possible.

« Registration Interface (RI): An interface for registering
capabilities of NSFs with the Security Controller. The RI
YANG data model [12] is designed so that the DMS can
register the capabilities of the NSFs with the Security
Controller and also the Security Controller can query
a new NSF with specific capabilities that can provide
security services.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on March 04,2024 at 06:19:59 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3371788

« NSF-Facing Interface (NFI): An interface that provides <i2nsf-cfi-policy
. . .. xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-cons-facing-interface">
NSFs with translated low-level security policies. The NFI <namessocial media policy</names
YANG data model [13] is intended to provide security <rules>))
. . <name>block_social_media</name>
policy configuration for the NSFs that can be used to <condition>
. : <firewall>
deploy the requested security services, e.g., access control <sourcesenployees</sources
lists. <transport-layer-protocol>
tcp
The I2NSF Framework provides an automated system to </transport-layer-protocol>
. . . <range-port-number>
enable NSFs for high-level instructions from a user. In order to (start>443</start>
enable the NSFs to follow the high-level instructions, a secu- <end>443</end>
K X A X K </range-port-number>
rity policy translator (called SPT) in the Security Controller is </firewalls
. . . <url-category>
required. It must provide an accurate translation for the target e o mediac Jurl-nane>
NSFs in order to protect a target network efficiently, assuming </Z(/) :gi;ii;‘iw
that a user properly provides the correct configuration. An <actions>
inaccurate translation will cause gaps in the protection for the <primary-action>
g p p <action>drop</action>
network. /</zt‘imar‘y-action> . Content
. </actions>
A target scenario is the translation of high-level security </rules>
.- i —cfi- i El t
policies into the corresponding low-level security policies in a ¢/iznst-cfi-policy> e

. (a) Example of a high-Ievel security policy
company. Since the main purpose is to provide users with an

easy and understandable way to configure NSFs, the translator Firewall: .
. R . <i2nsf-security-policy
must automatlcally and accurate]y translate the given hlgh- xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-nsf-facing-interface">
. <name>social_media_policy</name>
level security policy into the corresponding low-level security <ruless
policy. The translator must also determine the correct NSF(s) ¢namesblock soctal mediac/nane>
that can provide the requested security service in accordance <ipva>
. . . . <source-ipv4-network>192.0.2.0/24</source-ipv4-network>
with the given security policy. </ipva>
Fig. 2 illustrates an example scenario, in which a high- <tep>
. . . s <source-port-number>
level security policy is translated to the corresponding <lower-port>443¢/lower-port>
. .. . <upper-port>443</upper-port>
low-level security policies based on the available NSFs. In <Ssonmee-portonumbers ¢
Fig. 2(a), the I2NSF User (e.g., a network administrator) . /Zgﬁggiiom
provides a high-level security policy without any knowledge <action>
. . . . <ad d-action>
of the network and available NSFs. This security policy ali:ﬁ;jzeiz:ny_contmb
is equivalent to “All employees are prohibited url-filtering
. ’) . </content-security-control>
from accessing unauthorized social-media </advanced-action>
. . . . ti
websites on company devices” in English. </;ﬁzsi°">
Fig. 2(b) shows the results of the translation. Since </i2nsf-security-policy>
the NSFs are unable to process employees and URL Filtering: A
, . <i2nsf-security-policy
soc1alfmedla, th&y must be translated to the subnet xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-nsf-facing-interface">
o s
address (e.g., 192.0.2.0/24) and the hostname URL Sranedsoctal nedia_poticy</nane>
(e.g., www.facebook.com and www.instagram.com), z”a"‘j?*t#oc';ﬁOCialff"Edi“/”a’"”
. . : condition
respectively. The elements in the XML file of Fig. 2(a) must <url-category>
. : -defined f book. -defined
also be converted into a structure that is understandable to D RN
the NSFs. The Security Controller must also ensure that /</Ug?;§ati’€°"y>
o . .« . . </condaition
the policies are provisioned to the appropriate NSFs that <action>
. : . : <packet-action>
can actually perform the security policy. In this particular <egress-actionsdrop</egress-actions
scenario, a Firewall is used to verify the packets that have the </</iéckft*acti°ﬂ> . Content
. action
IP addresses of the employees with TCP packets through </rules>
</i2nsf-security-policy> . Element

a standard HTTPS port. If a packet meets this condition,
the Firewall will forward it to the URL Filtering to block
it, which tries to access social-media. Next section Fig. 2. Example of a translated security policy in XML
explains the proposed Security Policy Translator to handle
this scenario.

(b) Examples of Tow-Ievel security policies

1) Data Model Mapper: Its task is to map the high-level
elements to the corresponding low-level elements. The
mapping is performed automatically by the comparison

IV. SECURITY POLICY TRANSLATOR of the elements in the high-level and low-level YANG

In this section, the proposed Security Policy Translator data models using the Zhang-Shasha Algorithm [5]. This
(SPT) for the I2NSF framework is explained. Fig. 3 shows component is used when initializing SPT and when
the proposed SPT architecture. It consists of four main com- updating one or two of the YANG data models. The
ponents and one supporting component. A brief explanation results are saved in the NSF database for use in the
of the components is as follows: conversion process.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on March 04,2024 at 06:19:59 UTC from IEEE Xplore. Restrictions apply.
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3371788

High-Level Policy

| Security Policy Translator
y

Data A

Mapper
Extractor PP

Data
Converter

CDPolicy

Generator

Security Controller

NSF 1

NSF N

Fig. 3. Architecture of the Security Policy Translator

2)

3)

4)

5)

Data Extractor: It is used to verify the high-level
security policy provided by the I2NSF User and extract
the high-level data paired with the high-level elements.
This component is built in accordance with the concept
of the Deterministic Finite Automaton (DFA).

Data Converter: It is responsible for converting the
extracted high-level contents/elements to the correspond-
ing low-level contents/elements. It also provides policy
provisioning, i.e., selects the NSF(s) that can provide the
requested security service according to their capabilities.
The conversion is performed based on the information
saved in the NSF database.

Policy Generator: It is in charge of creating the low-level
security policy in an XML/JSON form to be delivered to
the selected NSF(s) for the high-level security policy.
NSF Database: It supports the SPT to collect and dis-
tribute the necessary information to the Data Converter.
It holds the endpoint data (e.g., user identification and
end device’s IP addresses), NSFs’ capabilities, and a
mapping model from the Data Model Mapper. The NSF
Database must be secured and well encrypted as it
contains private information and network details that may
reveal the vulnerabilities of the network. The security
and implementation of the NSF Database are out of the
scope of this paper as the primary emphasis is put on the
translation of security policies.

A. Data Model Mapper

In the I2NSF framework, an I2NSF User delivers the high-
level security policy encoded in an XML or JSON format with
the NETCONF or RESTCONF protocol. The high-level secu-
rity policy follows the data model defined in the Consumer-
Facing Interface YANG data model [11]. Each of the elements
in the data model is used to provide different services. In
order to correctly translate the high-level security policy into
the corresponding low-level security policy, it is crucial to map
each high-level element to at least one corresponding low-level
element.

The Data Model Mapper is used to automatically generate
data model mapping information, i.e., the mapping of each ele-
ment between the high-level and low-level YANG data models.
With the data model mapping information, this component is
used in the initial phase of the SPT. It is also used when at
least one of the YANG data models is updated or extended.
Next, the result is saved in the NSF Database for the actual
translation process.

Algorithm 1 Data Model Mapper Algorithm
1: function MAP_DATA_MODEL(H, L) > H is the CFI
YANG data model and L is the NFI YANG data model.
2: Listy < LINEAR_LIST(H) © Break H into a Linear

List.

3: Listy < LINEAR_LIST(L) > Break L into a Linear
List.

. for high in Listy do

5: for low in Listy, do > Loop through all
combinations.

6: treeDist[low] < ZSS(high,low) > Calculate tree
edit distance with Zhang-Shasha (ZSS) algorithm.

end for

8: result[high] < Keys of min(treeDist) > The
mapping results are the lowest tree edit distance.

9: end for

10: return result

11: end function

The proposed Data Model Mapper shown in Algorithm 1
is specifically designed to work for the I2NSF Framework,
with the process illustrated in Fig. 4. In the I2NSF Frame-
work, the high-level and low-level YANG data models are
designed to have similar labels for the elements with similar
semantics, e.g., source in the high-level YANG data model
and source-ipv4-network in the low-level YANG data
model. In the case where an element of the high-level YANG
data model and another element of the low-level YANG data
model have similar labels, but have different semantic mean-
ings, the context of these elements should be considered. But
in the case of the I2NSF Framework, the I2NSF data models
are designed such that each pair of two labels with similar
names on both YANG data models has the same semantics
properly. Hence, a text-based similarity can work well without
considering the semantics within the I2NSF environment.

Moreover, it is worth noting that both the high-level and
low-level YANG data models are engineered with the con-
sideration of low cardinality. In the realm of data modeling,

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on March 04,2024 at 06:19:59 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3371788

@ Input

@

Break into
Linear List

Calculate Tree
Edit Distance

Results:
Mapping Information

High-Level
YANG Data Model

Low-Level
YANG Data Model

(@)
Minimum Tree
Edit Distance

Fig. 4. Process of Data Model Mapper

cardinality refers to the number of elements in a set. Consid-
ering the cardinality of these models enables a solution that
is inherently efficient and frugal. During the process of data
model mapping, the mapper can focus on matching semantics
based on labels without being overly burdened by a vast array
of elements. Hence, by leveraging these design principles, the
Data Model Mapper is designed by taking advantage of the
nomenclature similarity between the high-level and low-level
YANG data models to automatically generate the data model
mapping information.

The algorithm works with the high-level and low-level
YANG data models as inputs. The YANG data models can be
expressed as tree data structures. Then both the data models
are split into separate linear lists, of which each consists of
one leaf and its parent until the root of the tree. Next, the tree
edit distance from each linear list of the high-level YANG
data model to each linear list of the low-level YANG data
model is computed. The tree edit distance can be calculated
with the Zhang-Shasha (ZSS) algorithm, which calculates the
minimum number of operations that can be done to make two
trees similar. In this operation, the labels (e.g., condition
and source-ipv4-network in Fig. 2) of the elements are
used to determine the distance. The operations are as follows:

o Insert: When there are missing elements, it adds the
elements.

o Delete: When there are excessive elements, it removes
the elements.

« Change: When the elements are equal, it modifies the
labels of the elements.

The insert and delete operations are calculated by the
number of characters of the labels to be added or removed,
respectively. To calculate the change operation, a distance al-

gorithm is needed as follows. Considering the close similarity
of words for the exact mapping in the design of the high-level
and low-level YANG data models, the proposed approach is
the Cosine Similarity algorithm [14].

Cosine Similarity measures two non-zero vectors which are
used to measure the similarity between strings. To obtain the
vector value of the elements, count-based vectorization is used
[15] as the vocabularies are limited to the CFI and NFI YANG
data models. The equation to calculate the string similarity is
as follows:

h.l
AL 121]
> hili
VoL VI
where

h : the label of the high-level element, and
[: the label of the low-level element.

similarity(h,l) = (D

The equation’s result is a similarity index of the two
compared elements from O to 1, where 0 indicates no similarity
and 1 indicates the exact same words. To modify it as a
distance, the following equation is used:

dist(h,1) = (1 — similarity(h,1)) x |h]. 2)

(2) returns the result as a distance value by inversing the
similarity(h,l) and multiplying it by |h|, ie., the length
of the high-level element’s label. The length of h is used
to normalize the values of all distances to find the lowest
distance. Next, the results of the tree edit distance calculation
are used to find the pair for each of the high-level elements.
The result can have multiple low-level elements as the pair’s
partner candidates for one high-level element. Selection of the

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on March 04,2024 at 06:19:59 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3371788

correct element is done by the Data Converter (see Section
IV-C) as the value of the element needs to be considered (e.g.,
according to the version of IP, that is IPv4 or IPv6).

The proposed Data Model Mapper significantly reduces the
need for human involvement through its dynamic mapping
that can adapt to changes in the data models. This flexibility
ensures that even as data models evolve, the system can
autonomously adjust its data model mapping for security
policy translation, while minimizing disruptions and main-
taining efficiency. While the Data Model Mapper operates
with minimal human intervention, there are specific instances
where human expertise remains invaluable. For example,
updating complex data models or re-initializing the system
might still need human involvement. From the point of view
of network security, this limited human intervention ensures
that the system functions with precision, effectively aligning
with the evolving demands of network security. Thus, the
balance between automated adaptability and human expertise
guarantees the system’s accuracy and relevance to network
security.

B. Data Extractor

Data Extractor is an SPT component built on the concept of
DFA. Data Extractor’s purpose is to extract the data from the
high-level security policy and relay it to the Data Converter
that converts it into the data for the corresponding low-level
security policy. The high-level security policy is based on the
CFI YANG data model [11]. To extract the data, DFA can
generally be constructed as in (3). DFA follows the hierarchy
of the CFI YANG data model completely and is convenient
for automatic construction.

M:(szv(;aQOvF)v (3)
where

Q : {Accepting, Middle, Extracting},
3 : A set of all clause names in the YANG data model,
& : A transition for each edge for each label in the YANG
data model,
qo : The initial state, i.e., Accepting, and
F : The final states, i.e., Accepting.

There are three types of internal states in DFA Data Extrac-
tor: Accepting, Middle, and Extracting. Accepting state
is the initial and final state. If the DFA finishes reading the
entire policy and enters the Accepting state, the high-level
security policy is accepted and the extracted data is relayed to
Data Converter. The Middle state is used to interact with the
elements that constitute the CFI YANG data model hierarchy.
The Eztracting state is located at each leaf node position in
the CFI YANG data model and the data corresponding to the
leaf node field is extracted.

Algorithm 2 shows the scheme of the Data Extractor. The
objective of the algorithm is to extract every data from the leaf
and make sure that the grammar is correct. To accomplish
this, the input must include the CFI YANG data model
and the high-level security policy. To properly extract every
data, the algorithm reads each element individually with the

Algorithm 2 Data Extractor Algorithm
1: function EXTRACT_DATA(D M, P) > DM is the
CFI YANG data model, and P is the high-level security
policy.
S < Accepting
Result + 0
while True do
T +READ_NEXT_ELEMENT_XPATH(P)
if T == empty then
return GrammarError
Error.
end if
9: S «GET_STATE(DM,T)
10: if S == Extracting then

> S is for the current state.

AN G

> Return a Grammar

*®

11: Result[T] + Data

12: else if S == Accepting then

13: break > Extraction finish

14: else if S == () then > T mismatch with DM

15: return GrammarError > Return a Grammar
Error.

16: end if

17: end while
18: return Result
19: end function

> Return a result.

READ_NEXT_ELEMENT_XPATH(P) function. It then uses the
GET_STATE(D M, T) function to obtain the next state, which
is set to S as the current state, by matching the XPath of the
XML element with the CFI YANG data model element. This
function also compares items in the CFI YANG data model
to the elements in the high-level security policy. If there is a
mismatch, it will return a GrammarError because the policy
does not properly correspond to the CFI YANG data model.
If the element is properly matched with the data model, then
it will return either the Accepting, Middle, or Extracting
state.

Fig. 5 illustrates the DFA transition graph constructed on
the basis of the XML example given in Fig. 2(a). When the
state is Extracting, it will save the data as a key-value pair
where the element is the key and the content is the value. If the
Data Extractor is in the Middle state, then it will continue to
process the next label. When the state returns to Accepting,
then the Data Extractor has finished extracting all data and
returns the mapping values. The result will be relayed to the
Data Converter for the next process.

With this method, I2NSF developers can conveniently man-
age the Data Extractor component because DFA can be built
automatically even if the CFI YANG data model is modified,
because the connection of each DFA node follows the hierar-
chy of the YANG data model. As the data model is constantly
updated due to both the characteristics of the standardization
work and the changes in customer security requirements, this
proposed component design can grant data model flexibility
for the I2NSF developers through the reconstruction of the
data model mapping.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on March 04,2024 at 06:19:59 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3371788

Accepter

<i2nsf-cfi-policy>

</i2nsf-cfi-policy>

{ Middle 1]

<name> </name>

<rules> </rules>

Extractor 1

social_media_policy

[Middle 2]

ry

<name> </name>

Extractor 2

block_social_media

<actions>| |[</actions>

<condition> </condition> Middle 7

<primary- T</pr‘imar‘y-
y

action>‘ action>
(vidate >) (

Middle 8 }

<firewall> F/Fir’ewalb <url-category> </url-category> <action>| [</action>
v - ~
[Middle 4 J [Middle 6 J [Extractor 7]
3 <range- </range- 1 drop
<source> </source> port- port- ;:r:e> </url-
< number>J | number> - name>
(Extractor 3] [Middle 5 [Extractor 6]
employees social-media

<end>|
<star*t>v </start>

</end>

[Extr‘actor‘ 4} [Extractor 5}
443 443

Fig. 5. Data Extractor based on Deterministic Finite Automaton (DFA)
C. Data Converter

The Data Converter converts the high-level data into the
corresponding low-level data for the NSFs. The data is the
key-value pairs extracted by the Data Extractor where the key
is the element and the value is the content (e.g., source
and employees are a pair of key and value). It is also
responsible for policy provisioning, which eliminates the need
for an I2NSF User to explicitly specify the target NSFs for a
high-level security policy. Thus, this component provides the
convenience of the translation.

To perform these tasks, the Data Converter must be well-
connected to the NSF Database where the necessary infor-
mation, i.e., mapping information and NSFs’ capabilities, is
stored. The information must be saved initially before the
actual translation process. The mapping information consists
of data model mapping information and endpoint data to
convert the corresponding element and content, respectively.
The information is obtained from the Data Model Mapper in
the initial stage of the SPT, while the endpoint data can be
registered by the I2NSF User with the NSF Database in the
Security Controller via the CFIL.

Fig. 6 illustrates converting and policy provisioning pro-
cesses that are done by the Data Converter for the example
given in Fig. 2. The first converting process is the conversion
of elements and contents of the high-level data. The contents
are converted into their corresponding contents based on the
information from the NSF database, e.g., employees —
192.0.2.0/24. The values of the converted content will
affect the selection of the element from the data model
mapping information. For example, the converted content of
the element source can either be an IPv4 address or an IPv6
address. If the content is an IPv4 address, then the selected

IPv4 Firewall (S,)
ipv4-capability:

-{ Source-address (c;)

tcp-capability:

:[social_media_policy] — Source-Port (c;)

Rule name

Policy
Provisioning

High-level Data Low-level Data

Policy name Policy name

\ Convert|
[social_media_polich

Rule name action-capability:

drop (ci)

IPv6 Firewall (S,)
ipv6-capability:

Source-address

tcp-capability:
Source-Port (c,)

[block_social media) »

J g

block_social_media]

source source-ipv4-network

o (c1))
L

[employees] 192.0.2.0/24

transport-layer-protocol

TCcP tcp/source-port-number N
el
range-port-number 443 443

url-name

action-capability:

drop (ci)

url-category/user-defined
Web Filter (S,)

[bsites } :[facebook] [instagram](c'> url-filtering-capability:
I—l»{ User-defined (c-)

(ca)l action-capability:

» droj
> p -
¢ (drop (c.)

action action

(-

[drop

Fig. 6. Data Converter with Policy Provisioning

element will be the source—-ipv4-network as it will hold
an IPv4 address.

The second policy provisioning process is the provisioning
to select the appropriate NSFs for the security policy. The
selection of NSFs is based on the capabilities of the NSFs
registered with the NSF Database. The capabilities of NSFs are
defined in the I2NSF Capability YANG data model document
[16] and registered with the NSF Database via the Registration
Interface. Each low-level element is correlated to an NSF
capability. The example presented in Fig. 6 shows that three
different NSFs are registered with the NSF Database, i.e., IPv4
Firewall, IPv6 Firewall, and Web Filter. Each NSF has unique
capabilities to handle different network traffic. The IPv4 and
IPv6 Firewalls are used to filter network traffic based on the
packet’s IP address (e.g., IPv4 or IPv6 address, respectively),
while the Web Filter is used to restrict the websites that a
client can use. Therefore, the policy provisioning function is
designed to satisfy the following requirements:

1) Each element must be regulated by an NSF: The
most important requirement is to fully comply with the
I2NSF User’s request. If any of the elements cannot be
supported by the registered NSFs, the Security Controller
must request a new NSF with the missing capabilities to
the DMS. If the DMS is unable to provide the NSFs for
any reason, then the Data Converter will generate an error
message for the I2NSF User.

2) The selected NSFs should be optimal: To optimize re-
source and network usage, the number of NSFs involved
in security policy regulation should be minimized. The
NSFs that are able to cover more elements should be
selected.

3) The selection time should be short: Having a fast
translator for the swift deployment of NSF as the security
of the network is important. A slow translator may cause
serious losses for the users.

With these requirements, the policy provisioning problem
can be defined as a Set-Cover Problem [17] to find a minimum
number of NSFs that can include all of the required elements.
The following definitions are used for policy provisioning:

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on March 04,2024 at 06:19:59 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3371788

Definition IV.1. Let U be Universe set (i.e., a policy-
enforcing capability set) having essential capabilities (U =
{c1,¢2, ..., cn}) required for a security policy. For example, in
Fig. 6, the required capabilities for a given high-level security
policy are IPv4 source-address (c1), TCP source-port (cz), the
URL (c3) verification, and packet denial capability (cy).

Definition IV.2. Let S; be a Subset (i.e., an NSF Capa-
bility set) having the capabilities of an NSF from the NSF
database. For example, Fig. 6 shows the NSF Sy with IPv4
source-address (c1), TCP source-port (c3), and packet denial
capability (cy), ie., S1 = {c1,¢2,c4}. Where NSF with a
corresponding subset (S;) has the coverage of capabilities for
the Universe set U.

Algorithm 3 Policy Provisioning Algorithm

1: function POLICY_PROVISIONING(convertedData,S) ©>
convertedData contains the results of the conversion. >
S is the set of all NSFs that have at least one capability,
which constructs U.

2: U «<FIND_UNIVERSE(converted Data) > U is the
Universe, which contains the capabilities required.

3: nsf <FIND_NSFs(U,S) > FIND_NSFs(U, S) finds a
set of NSFs (denoted as nsf) to encompass the elements
(i.e., capabilities) of U.

4. Results < ()

5. for key,val in convertedData do

6: for i in len(nsf) do

7: if nsf[i] has the capability for key then

8: if ("action” in key) and (i < len(nsf)—1) then
> The condition to activate Service Function Chaining
(SFC).

9: Results[nsfli]][key] + nsf[i + 1]

10: else

11 Results[nsfli]][key] < val

12: end if

13: end if

14: end for

15: end for
16: return Results
17: end function

For this optimization, we propose a Policy Provisioning
algorithm as shown in Algorithm 3. The algorithm takes inputs
of convertedData and S, where ConvertedData is the result
of the previous conversion process and S is the set of all NSFs
that have at least one capability that is an element in the set
U. In line 2, the FIND_UNIVERSE(convertedData) function
takes convertedData to find the necessary capabilities as
the Universe based on the capabilities defined in the I2NSF
Capabilities YANG data model [16].

In line 3, a subfunction called FIND_NSFES(U, S) is called,
taking both the universe set U and the set of subsets S; as input
to find an optimal set of NSF(s) that can completely operate
the requested security policy. In this paper, two approaches
are used and compared to discover the best method that can
find an optimal set of NSFs, i.e., Greedy Algorithm and Linear
Programming.

(1) Greedy Algorithm: As shown in Algorithm 4, the algo-
rithm iteratively selects subsets (S;) from S that cover
elements in U [18]. Each loop selects a subset S; that
covers the most elements in U until every element in U
has been covered.

Algorithm 4 Set-Cover Algorithm

1: function SET_COVER(U, S)
the set of subsets.

> U is the Universe, S is

2 X+U > X stores the uncovered elements.

33 C+«+ 0 > C stores the subsets and their elements of
the cover.

4: while X # () do

5: Select S; from S such that .S; covers the most elements
in X

6 X + X — S;[elements]

7: C[S;] + Silelements]

8 S+ S-—5;

9: end while

10: return C
11: end function

(i1) Linear Programming: It maximizes or minimizes a lin-
ear objective function with linear constraints [18]. The
equation to find an optimal solution is as follows:

mn

minimize Z cjT;, 4)
j=1
n
subject to Zaijxj >b;,, fori=1,...m, (5)
j=1
z; >0, for j =1,...,m.

In lines 6 - 16 of Algorithm 3, the convertedData is looped
in order to properly deliver the appropriate security policies to
each NSF. In line 7, the function checks whether the current
NSF has the capability for the current key. If it does, then in
line 8, the function ensures that the security policies are able to
activate the Service Function Chaining (SFC) [19] by checking
whether the key includes the word “action” and whether the
current index is the last NSF. If so, the value for the key in the
results dictionary is set to the next NSF in the set. But if one or
more conditions are false, the value is set to the original value
from the convertedData input. When all key/value pairs are
processed, the results dictionary is returned. This result will
be used in the next process, i.e., Policy Generator, which is
explained in Section IV-D.

The choice of NSFs is critical to timing the security of
the network. The time complexity of Algorithm 3 can be
expressed as O(|convertedDatal|S|+ T (FIND_NSFS(U, S)),
where T'(FIND_NSFS(U,S)) is the time complexity of the
function FIND_NSFS(U, S). At worst, the FIND_NSFS(U, S)
function, which uses either Greedy Algorithm or Linear
Programming approach, will have the time complexity of
O((|convertedDatal|S|)?). Overall, the time complexity for
Policy Provisioning algorithm is O(|convertedDatal|S| +
(|convertedDatal|S|)?). However, as the number of elements
and NSFs should remain within a reasonable bound, the

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on March 04,2024 at 06:19:59 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3371788

Converted Data

|

— Pair 5
|(Tow-Tevel Elements: Low-Level Contents: |
| source-ipv4-network 192.0.2.0/24 J

NSF-Facing Interface
YANG Data Model

NSF-Facing Interface
Python Classes

PyangBind
Generator

A 4

Low-level Security Policy in XML

Policy Generator

Fig. 7. Policy Generator

duration of selecting the most suitable NSFS should also
remain reasonable.

D. Policy Generator

The Policy Generator is the final process to completely
translated the user’s security policy for the NSFs. The ob-
jective of this component is to generate the corresponding
low-level security policies for the NSFs based on the con-
verted data received from the Data Converter. The low-level
security policies must be separated for each NSFs in order to
implement it. The low-level security policies are delivered in
XML or JSON format with either NETCONF or RESTCONF
protocol, and the low-level security policies conform to the
NFI YANG data model [13].

Fig. 7 shows how the Policy Generator produces the low-
level security policy. PyangBind [20] is used to automat-
ically generate low-level security policies and ensure that
they comply with the YANG data model. Pyangbind allows
YANG data models to be used as a basis for defining Python
classes, with each YANG data element being represented as
a class attribute. This allows developers to use the familiar
syntax and structure of Python classes to interact with data
modeled in YANG, making it easier to write software that
works with a YANG data model. Pyangbind is built on top of
the Pyang [21] tool, which is a Python library for validating
and manipulating YANG data models. Pyangbind uses Pyang
to parse and validate YANG data models, and also generate
Python classes based on the data model. It also includes a
number of additional features and utilities for working with
the generated Python classes, such as the ability to serialize
and deserialize data between different formats (e.g., XML and
JSON). With Pyangbind, any changes made to the YANG data
model can be easily applied to the translator to generate the
low-level security policy.

Algorithm 5 shows the generation of security policies
for each provisioned NSFs by utilizing PyangBind. The
function takes a single argument, P, which is the re-
sult of the function POLICY_PROVISIONING(convertedData)
in Algorithm 3. In line 2, a Python class called
tetf_i2nsf_nsf_facing_inter face is instantiated, which is
generated by PyangBind, and is assigned as an object called

10

Algorithm 5 Policy Generator Algorithm

1: function GENERATOR(P) > P is the result of the
PoLICY_PROVISIONING(converted Data).

nfi < ietf_i2nsf_nsf_facing_inter face() >
tetf_i2nsf_nsf_facing_inter face is the Python Class
Generated by PyangBind.
3: for nsf,data in P do
4 if nsf is null then
5 return ’Error, NSF not found.”
6: end if
7
8
9

»

for k,v in data do
attr < GET_ATTR(n f1, k)
SET_ATTR(attr, v)
10: end for
11: result[nsf] < PYBIND(n f%)
12: end for
13: return result
14: end function

nfi. The nfi object is used to manipulate data that is
expressed in the NFI Yang data model. Then, the function
enters a loop that iterates over each item in P. For each item,
nsf is the key and data is the value. In line 4, the function
checks if nsf is null or not. If so, the function returns a string
indicating that the NSF was not found. If nsf is not null,
the function enters another loop in line 7 that iterates over
each key-value pair in the data. For each key-value pair, the
function calls the GET_ATTR(n f4, k) function to retrieve the
Python Class attribute of k£ from the n fi, and saves it as attr.
In line 9, the function calls the SET_ATTR(attr, v) function
to set the Python Class attribute of k with v as the value.
After processing all of the key-value pairs, the function calls
the PYBIND(n fi) function to produce the low-level security
policy in an XML or JSON format [20] and stores the result
as a dictionary, using nsf as the key.

V. PERFORMANCE EVALUATION

In this section, the performance of SPT is evaluated to
assess the effectiveness and efficiency of the translator. A set
of indicators and parameters is established to measure and
compare the performance of SPT against its stated goals and
objectives. We analyzed every proposed component using a
variety of methods, gathering a wealth of information about the
program’s performance and identifying areas for improvement.
Table I shows the specification and environment used to
evaluate the performance of SPT.

TABLE I
TEST CONFIGURATION FOR SPT
Description Specification
CPU Intel(R) Xeon(R) Gold 6230R CPU
@ 2.10GHz
Memory 251 GiB
oS Ubuntu 18.04.5 LTS
Python version 3.7.4
Number of NSFs 5 ~ 20 NSFs
Number of 4 ~ 14 elements (100 different security policies
Elements for each number of elements)
Extended Elements 41 ~ 50 elements

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on March 04,2024 at 06:19:59 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3371788

A. Data Model Mapper

The Data Model Mapper proposed in this paper is a specific
method that can be used to map the elements between the
CFI YANG data model and the NFI YANG data model.
The proposed dynamic method leverages the design similarity
between the two YANG data models to accurately suggest a
mapping model between each pair of elements in the data
models. Two methods are compared to find the effectiveness
of the Data Model Mapper, i.e., label-based mapping and
semantic-based mapping. Label-based mapping only utilizes
the labels of the elements and is calculated with Cosine
Similarity explained in Section IV-A. Semantic-based mapping
considers the semantics of the elements to find the mapping
information utilizing Natural Language Processing (NLP) to
find the semantic similarity. In the experiment, Universal Sen-
tence Encoder [22] is used within the spaCy library [23] which
allows Docs, Spans, and Tokens to be embedded directly from
the Universal Sentence Encoder family.

We prepare extensions of the CFI YANG data model to find
the effect of the extension on the accuracy of the proposed
mapper. The extensions are created based on missing details
in CFI elements compared to the NFI elements, i.e., detailed
information of a packet header condition such as packet length
and TTL information.

Fig. 8 presents the performance of the Data Model Mapper,
emphasizing the distinction between the label-based mapping
and the semantic-based mapping in mapping the elements
between the CFI YANG data model and the NFI YANG data
model. As shown in Fig. 8(a), the label-based mapping can
map the elements with 100% accuracy for 41 elements but
can map the elements with 89% accuracy for 50 elements.
Thus, as the number of elements increases, the accuracy of
the label-based mapping decreases gradually. On the other
hand, the semantic-based mapping has lower accuracy from
94% to 83% over the number of elements from 41 to 50 than
the label-based mapping. From these results, it is seen that
the label-based mapping approach outperforms the semantics-
based mapping. These results come from the nature of the
design of the CFI and NFI YANG data models where the
labels of the elements have high similarity. Furthermore, this
outcome can be attributed to several factors rooted in both
semantic analysis and complexity associated with mapping
intricate data models.

Another issue with the semantic-based mapping with NLP is
the execution time. In the field of network security, time is very
critical. As presented in Fig. 8(b), the semantic-based mapping
takes up to around 156 seconds with 50 extended elements in
the data model, while the label-based mapping takes up to
13 seconds with 50 extended elements. This shows that the
semantic-based mapping may cause a problem for the prompt
defense of the network since the longer it takes to update the
system, the longer the vulnerability window for the network
is. This is because the semantic-based mapping delves deeply
into the meaning and context of words, phrases, and sentences
which will take a longer time to process each element.

Therefore, it is shown that the proposed Data Model Map-
per using the label-based mapping approach can effectively

1.0
>
Q
g
3 0.9
(5]
<
Label-based
—A— Semantic-based
0.8 : : : T T y T T T T
41 42 43 44 45 46 47 48 49 50
Number of Elements
(a) Accuracy
160 4 Label-based
—4— Semantic-based
140
120 4
)
g
= 1007
=
8 80
=
o
2 604
88|
404
204
oA

4 42 43 44 45 46 47 48 49 50
Number of Elements
(b) Execution Time

Fig. 8. Impact of YANG Data Model Extension to Data Model Mapper

perform the mapping between the CFI and NFI with better
accuracy and shorter execution time in network security ser-
vices.

B. Data Extractor

The proposed extraction method is based on the concept of
DFA. It constructs the semantics that must be followed based
on the YANG data model. This process verifies whether a
high-level policy is acceptable or not according to the given
CFI YANG data model. The proposed component guarantees
complete extraction with 100% accuracy. To assess the per-
formance, we compare the time it takes to extract the high-
level security policy with and without YANG data model
verification. A YANG data model verification validates the
given high-level security policy to check whether it conforms
to the CFI YANG data model or not. We also examine the
impact of the number of elements to be extracted.

To evaluate the Data Extractor, we compile 100 high-level
security policies for each element quantity (from 4 elements to
12 elements). Fig. 9 displays the performance of the proposed
Data Extractor. It shows that the YANG data model verification

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on March 04,2024 at 06:19:59 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3371788

0.45 +
W Extraction with DFA-based YANG data model verification
0.40 Extraction without YANG data model verification

0.35
030 .

020 j - i

Time (milliseconds)

e

i

=)
L

o
o
@

0.00

4‘1 é é 1‘0 1‘2 1‘4
Number of Elements

Fig. 9. Data Extractor Performance with and without YANG data model
verification
increases the time of extraction by around 30% of the extrac-
tion process without YANG data model verification. However,
since YANG data model verification is necessary to guarantee
that the security policy is correctly deployed, it is unavoidable
to spend more time on the extraction process. The number
of elements also increases the operational time of the Data
Extractor as more elements of the high-level security policy are
used. The duration slowly increases from 0.2 milliseconds for
4 elements and increases to 0.4 milliseconds for 12 elements.
The increasing number of elements does not fully impact the
time duration of extraction, and the time duration is negligible
to humans.

This performance evaluation shows that the Data Extractor
can be used to perform the extraction with negligible time
duration for the I2NSF system.

C. Data Converter

The Data Converter involves two processes, i.e., conversion
and provisioning. The conversion process is handled by ex-
changing information with the NSF database. We omit the
performance of conversion as it shows the performance of the
NSF database rather than the performance of the translation.
For the provisioning process, the evaluation setting is as
follows:

o Performance Metrics: (i) Average Time, (ii) Solution
Quality, and (iii) Memory Usage are used as metrics for
the performance.

o Approaches: To find the best approach for our opti-
mization, we tested (i) Linear Programming and (ii)
Greedy Algorithm as optimization techniques. We use
Combination to find the guaranteed optimal solution as
the baseline.

o Parameters: For the performance, the impact of the
Number of NSFs is investigated. The NSFs have different
sets of capabilities to verify the integrity of the solution.

Fig. 10 displays the performance of the proposed Policy
Provisioning. Fig. 10(a) shows the average time needed to
find the solution. All three approaches present a longer time
duration when the number of NSFs involved increases. The
Greedy Algorithm and Linear Programming approaches show

a slow increment when the number of NSFs increases. The
Combination method shows exponential growth as it has to
calculate every possible combination and find the best solution
that can provide the security service. The Greedy Algorithm
has the fastest performance compared to the other approaches,
while the Linear Programming is slower than the Combination
if the number of NSFs is lower than 14.

Fig. 10(b) presents the solution quality generated by the
three approaches. The Combination approach will always pro-
vide the best optimal solution as it calculates every possibility
that can be used to find the solution. Similarly, the Linear
Programming approach is also able to find an optimal solution
for 100% over time for any security policy even with the
increasing number of NSFs. The Greedy Algorithm approach
shows a lower solution quality than the Linear Programming
and the Combination. The Greedy Algorithm approach cannot
perfectly provide the most optimal solution for every security
policy. When there are 5 NSFs, it can provide an optimal
solution for 95% over time, but the percentage decreases as
the number of NSFs increases.

Fig. 10(c) shows the memory usage of each approach.
The Combination approach exhibits a high memory usage
when there are more than 10 NSFs involved. Whereas the
memory usages of the Greedy Algorithm and Linear Program-
ming approaches show parallel results which are lower than
the Combination approach. The Linear Programming shows
slightly higher memory usage than the Greedy Algorithm
approach. Both of the approaches increase at the same rate
with the increasing number of NSFs.

Overall, to find an optimal solution for Policy Provisioning,
the best approach is to use the Linear Programming as it can
provide the most balanced solution with negligible operational
time and low memory usage even with a larger number of
NSFs, even though the Greedy Algorithm approach is able to
quickly find a solution.

D. Policy Generator

The Policy Generator utilizes PyangBind to generate the
low-level security policies either in an XML or JSON format.
To evaluate the performance difference between the generated
security policies in an XML and JSON format, we use the
converted high-level security policies and measure the average
time it takes to generate the low-level security in XML
and JSON format. We also measure the impact of elements’
quantity on the performance of the Policy Generator.

Fig. 11 displays the average time for generating the low-
level security policies in an XML and JSON format. Based on
the result, both of these formats are affected by the addition
of elements, with the average time increasing steadily with a
larger number of elements. From the figure, it is clear that the
Policy Generator can perform better when generating security
policies in a JSON format. The average time for the JSON
format starts from around 0.5 milliseconds to 0.7 milliseconds
for 4 elements to 14 elements, while the average time for
the XML format is around 0.7 milliseconds to 1 millisecond.
Overall, the performance of the Policy Generator in an XML
and JSON format is acceptable to generate low-level security
policies as it is negligible.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on March 04,2024 at 06:19:59 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3371788

13

—©— COMBINATION
357 —A— GREEDY
-8B~ LINEAR PROGRAMMING

0.14f

/
017

°
]
S

Time (seconds)

Optimality (%)

°

°

°
o

—©— COMBINATION
—A— GREEDY
*f3+ LINEAR PROGRAMMING

4000

—©— COMBINATION

—A— GREEDY

—B— LINEAR PROGRAMMING
2807

3000 I

260/

3500

2500 246
270
Joo
1500 .

Memory (KiB)

8o
|
1000 /160

56 (7 8 9 10 11 12|
/ |
5001/

AR

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of NSFs
(a) Average Time

Fig. 10. Impact of NSFs’ Quantity on Policy Provisioning Performance

I
Hy

T - Policy Generator in XML format
Policy Generator in JSON format

jj]l I]I]I IJI]IJI
"

11
Number of Elements

g
=3
!

o
©

Time (milliseconds)
o o o o o o
S 2 & 8 2 8

o
N}

o
o

o
o

Fig. 11. Policy Generator Performance

E. Discussion

The proposed Security Policy Translator is used to translate
a high-level security policy to the corresponding lower-level
security policy in an 2NSF Framework. The proposed method
is a specific approach that is designed to work specifically
for the I2NSF Framework to achieve accurate automatic
translation. This approach effectively bridges the gap between
abstract high-level policy requirements and the complexities
associated with low-level device configurations. Automated
translations reduce the chances of misconfigurations, which
are often a significant source of network vulnerabilities.
Consequently, the network becomes more robust and less
susceptible to security breaches, thereby bolstering overall
system reliability.

In terms of the quality and accuracy of translated results,
the proposed methods designed specifically for the I2NSF
Framework play a pivotal role. The specificity of the method
ensures that the translations are not generic but precisely
aligned with the requirements of the I2NSF architecture. This
approach enhances the accuracy of translations, as it takes into
account the unique features and intricacies of the framework.
As a result, the translated security policies align perfectly with
the intended configurations, which suggests that the proposed
scheme can be utilized in real-world scenarios.

Overall, the proposed Security Policy Translator is a signifi-
cant upgrade designed for the I2NSF Framework. It embodies

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of NSFs
(b) Solution Quality

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of NSFs
(c) Memory Usage

a paradigm shift towards Network Management Automation,
which seamlessly translates abstract high-level security poli-
cies into accurate and reliable low-level device configurations.
This transformation not only ensures the network’s security
but also significantly improves its overall reliability, making
it a foundation for secure, efficient, and dependable network
infrastructures.

VI. CONCLUSION

In this paper, we propose a Security Policy Translator
(SPT) for Network Security Functions (NSFs) in cloud-based
security services. We use a standardized framework developed
by the Interface to Network Security Function (I2ZNSF) Work-
ing Group to control and manage network security services.
The proposed translator allows I2NSF User to protect their
networks without the need for network security knowledge by
providing a high-level security policy. The proposed translator
is able to extract the high-level security policy by constructing
Deterministic Finite Automaton (DFA) based on the standard-
ized Consumer-Facing Interface YANG data model. It then
converts the extracted data to a lower-level form which is
done by utilizing a data model mapper between the high-level
YANG data model and the low-level YANG data model. It
also selects the optimal NSFs that can realize the requested
security policies. Finally, it generates the low-level security
policies in either XML or JSON format to be deployed to the
selected NSFs. We have evaluated SPT and showed that it is
able to perform well as an automated translator.

As future work, we will extend our SPT to support natural
language processing (NLP) to allow I2NSF User to request
security services in a more convenient way. We also want
to extend the SPT to perform in a less specific networking
area, e.g., routing devices (e.g., BGP gateways) and 5G core
networks for better networking management.

ACKNOWLEDGMENTS

This work was supported by the Institute of Information
& Communications Technology Planning & Evaluation (II'TP)
grant funded by the Ministry of Science and ICT (MSIT),
South Korea (No. 2022-0-01015, Development of Candidate
Element Technology for Intelligent 6G Mobile Core Network).
This work was supported in part by the IITP grant funded by
the MSIT (No. 2022-0-01199-002, Regional strategic industry

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on March 04,2024 at 06:19:59 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3371788

convergence security core talent training business). Figs. 1
and 3 have been designed using images from Flaticon.com.

[1]
[2]

[3]

[4]
[5]

[6]
[7]

[8

[t}

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]
[20]

[21
[22]

REFERENCES

S. Kemp, “Digital 2022: April global statshot report,” https://
datareportal.com/reports/digital-2022-april-global-statshot, 2022.
Corvus, “Survey findings: Smb cyber readiness,” https:
/linsights.corvusinsurance.com/cyber-risk-insight-index-q1-2022/
survey-findings-smb-cyber-readiness#, 2022.

D. Lopez, E. Lopez, L. Dunbar, J. Strassner, and R. Kumar, “Framework
for Interface to Network Security Functions,” RFC 8329, Feb. 2018.
[Online]. Available: https://rfc-editor.org/rfc/rfc8329.txt

M. Bjorklund, “The YANG 1.1 Data Modeling Language,” RFC 7950,
Aug. 2016. [Online]. Available: https://www.rfc-editor.org/info/rfc7950
K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance
between trees and related problems,” SIAM J. Comput., vol. 18, pp.
1245-1262, Dec. 1989.

A. Leivadeas and M. Falkner, “A survey on intent based networking,”
IEEE Communications Surveys & Tutorials, pp. 1-1, 2022.

J. Kim, E. Kim, J. Yang, J. Jeong, H. Kim, S. Hyun, H. Yang, J. Oh,
Y. Kim, S. Hares, and L. Dunbar, “IBCS: Intent-based cloud services for
security applications,” IEEE Communications Magazine, vol. 58, no. 4,
pp. 45-51, 2020.

K. Abbas, T. A. Khan, M. Afaq, and W.-C. Song, “Network slice life-
cycle management for 5g mobile networks: An intent-based networking
approach,” IEEE Access, vol. 9, pp. 80 128-80 146, 2021.

R. Enns, M. Bjorklund, A. Bierman, and J. Schonwilder, “Network
Configuration Protocol (NETCONF),” RFC 6241, Jun. 2011. [Online].
Available: https://www.rfc-editor.org/info/rfc6241

A. Bierman, M. Bjorklund, and K. Watsen, “RESTCONF Protocol,”
RFC 8040, Jan. 2017. [Online]. Available: https://www.rfc-editor.org/
info/rfc8040

J. P. Jeong, C. Chung, T.-J. Ahn, R. Kumar, and S. Hares, “I2NSF
Consumer-Facing Interface YANG Data Model,” Internet Engineering
Task Force, Internet-Draft draft-ietf-i2nsf-consumer-facing-interface-
dm-31, May 2023, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/draft-ietf-i2nsf-consumer- facing-interface-dm/
S. Hyun, J. P Jeong, T. Roh, S. Wi, and P. Jung-
Soo, “I2NSF Registration Interface YANG Data Model for
NSF Capability Registration,” Internet Engineering Task Force,
Internet-Draft draft-ietf-i2nsf-registration-interface-dm-26, May 2023,
work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-ietf-i2nsf-registration- interface-dm/

J. T. Kim, J. P. Jeong, P. Jung-Soo, S. Hares, and Q. Lin, “I2NSF
Network Security Function-Facing Interface YANG Data Model,” Inter-
net Engineering Task Force, Internet-Draft draft-ietf-i2nsf-nsf-facing-
interface-dm-29, Jun. 2022, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-i2nsf-nsf-facing-interface-dm/
F. Rahutomo, T. Kitasuka, and M. Aritsugi, “Semantic cosine similarity,”
in The 7th international student conference on advanced science and
technology ICAST, vol. 4, no. 1, 2012, p. 1.

A. Kedia and M. Rasu, Hands-On Python Natural Language
Processing: Explore Tools and Techniques to Analyze and Process
Text with a View to Building Real-world NLP Applications. Packt
Publishing, 2020. [Online]. Available: https://books.google.co.kr/books?
id=_tmbzQEACAAJ

S. Hares, J. P. Jeong, J. T. Kim, R. Moskowitz, and Q. Lin,
“I2NSF Capability YANG Data Model,” Internet Engineering Task
Force, Internet-Draft draft-ietf-i2nsf-capability-data-model-32, May
2022, work in Progress. [Online]. Available: https://datatracker.ietf.org/
doc/draft-ietf-i2nsf-capability-data-model/

T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction To
Algorithms, ser. Mit Electrical Engineering and Computer Science.
MIT Press, 2001. [Online]. Available: https://books.google.co.id/books?
id=NLngYyWFI_YC

V. V. Vazirani, Approximation algorithms. Springer Publishing Com-
pany, Incorporated, Dec. 2010.

J. M. Halpern and C. Pignataro, “Service Function Chaining
(SFC) Architecture,” RFC 7665, Oct. 2015. [Online]. Available:
https://www.rfc-editor.org/info/rfc7665

R. Shakir, “pyangbind,” https://github.com/robshakir/pyangbind, 2018.
M. Bjorklund, “pyang,” https://github.com/mbj4668/pyang, 2017.

D. Cer, Y. Yang, S. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant,
M. Guajardo-Cespedes, S. Yuan, C. Tar, Y. Sung, B. Strope, and
R. Kurzweil, “Universal sentence encoder,” CoRR, vol. abs/1803.11175,
2018. [Online]. Available: http://arxiv.org/abs/1803.11175

[23] M. Mensio, “Spacy - universal sentence encoder,” https://github.com/
MartinoMensio/spacy-universal-sentence-encoder, 2023.

Patrick Lingga has been a Ph.D student in the
Department of Electrical and Computer Engineering
at Sungkyunkwan University since Fall in 2019.
His Ph.D advisor is Professor Jachoon (Paul) Jeong.
He got a BS degree in July 2019 from Bandung
Institute of Technology, Indonesia. His major was
Telecommunication Engineering in the Department
of Electrical Engineering and Informatics. His re-
search interests include Software-Defined Network-
ing (SDN), Network Functions Virtualization (NFV),
Intent-Based Networking (IBN), and 5G Networks.

Lo

Jaehoon (Paul) Jeong is an associate professor in
the Department of Computer Science and Engineer-
ing at Sungkyunkwan University in South Korea.
He received his Ph.D. degree in the Department of
Computer Science and Engineering at the University
of Minnesota in 2009. He received his B.S. degree
from the Department of Information Engineering at
Sungkyunkwan University and his M.S. degree from
the School of Computer Science and Engineering
at Seoul National University in Korea, in 1999
and 2001, respectively. His research areas include
Internet of Things (IoT), Network Security, Software-Defined Networking
(SDN), Network Functions Virtualization (NFV), Intent-Based Networking
(IBN), 5G Networks, and Indoor Localization. Dr. Jeong is a member of
ACM, IEEE, and the IEEE Computer Society.

Jinhyuk Yang holds an MS from the Depart-
ment of Electrical and Computer Engineering of
Sungkyunkwan University in August 2019. His advi-
sor was Professor Jachoon (Paul) Jeong. His research
interests include Network Functions Virtualization
(NFV), Intent-Based Networking (IBN), and Natural
Language Processing (NLP).

Jeonghyeon Kim has been a Ph.D student in the
Department of Computer Science and Engineering at
Sungkyunkwan University, South Korea since spring
2021. His Ph.D advisor is Professor Jachoon (Paul)
Jeong. He got a BS degree from Pusan National
University. His research interests include Software-
Defined Networking (SDN), Network Functions Vir-
tualization (NFV), Intent-Based Networking (IBN),
5G Networks, Cloud Native Computing, and Indoor
Localization.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on March 04,2024 at 06:19:59 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

