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Abstract
This article proposes an intent-based closed-

loop security control (ICSC) system for intelligent 
and effective security service management. Recent 
advancements in computer network technol-
ogies have led to the emergence of intent-based 
networking (IBN), significantly improving network 
security management. This article presents novel 
contributions to IBN, emphasizing intent fulfillment 
and intent assurance within network security. The 
proposed approach in this article utilizes a stan-
dardized framework called interface to network 
security functions (I2NSF) with standardized com-
munication protocols and data models, allowing the 
deployment of security policies across multi-vendor 
environments. Furthermore, the existing security pol-
icy translator for an intent is extended to support 
dynamic translation, enabling the immediate inte-
gration of new security solutions into the network. 
An analytics component with machine learning is 
also introduced for continuous network monitor-
ing, proactively identifying anomalies, and trigger-
ing automated threat mitigation. Additionally, the 
ICSC system’s performance is assessed in various 
scenarios and configurations, providing a thorough 
understanding of its strengths and limitations. Thus, 
it is shown that the ICSC system can establish robust 
and adaptive network security management.

Introduction
The evolution of technology has revolutionized 
computer network design and management. Tra-
ditional networks relied on specialized, proprietary 
hardware devices like routers, switches, and fire-
walls, leading to inflexible and expensive infrastruc-
tures. To address these limitations, new networking 
paradigms called Software-Defined Networking 
(SDN) and Network Functions Virtualization (NFV) 
have emerged in attempts to provide a more agile, 
efficient, and cost-effective networking infrastruc-
ture. However, the complexity and dynamism of 
these networks pose new challenges for network 
administrators in terms of the effective manage-
ment and orchestration of networks. To address 
these challenges, a new paradigm called Intent-
Based Networking (IBN) has emerged.

IBN takes the concept of SDN and NFV a 
step further by adding a layer of abstraction that 
allows network administrators to define the intent 

or objectives of the network, rather than specify-
ing the specific configuration of network devices. 
This approach simplifies network management by 
automating the translation of a high-level intent 
into low-level network configurations. Thus, allow-
ing network administrators to focus on the desired 
outcome of the network rather than the configu-
ration. As defined in RFC 9315 in [1], the concept 
of IBN encompasses two crucial functionalities:
•	 Intent Fulfillment: This functionality enables 

users to communicate their network intent 
and perform the necessary actions to 
achieve it. It includes optimizing outcomes, 
orchestrating configuration operations, and 
translating a high-level network intent into 
lower-level network configurations.

•	 Intent Assurance: This functionality allows 
users to validate and monitor network align-
ment with the desired intent. It provides 
feedback to optimize fulfillment functions, 
assess effectiveness, and address network 
behavior that gradually deviates from the 
desired intent over time.
The concept of IBN has been developed by 

several works discussed in [2], each with different 
strategies to achieve the solution. These works 
have contributed significantly to the advance-
ment of IBN, demonstrating various strategies and 
implementations. However, most of the works 
are implemented in a very specific way for their 
respective system. This poses a limitation when 
attempting to scale up across different environ-
ments created by various vendors.

To overcome this issue, the Interface to Net-
work Security Function (I2NSF) Framework [3] 
provides standardized software interfaces and 
data models designed specifically to support dif-
ferent types of Network Security Functions (NSFs). 
To apply IBN to network security, J. Kim et al. [4] 
proposed Intent-Based Cloud Services (IBCS) that 
enable an automated and virtualized security sys-
tem with easy and flexible security services by 
utilizing the I2NSF Framework. Furthermore, C. 
Basile et al. [5] provide automated enforcement 
of security policies with optimal selection of NSFs.

While works in [4] and [5] represent a notable 
attempt to automate and virtualize security systems, 
some inherent challenges and shortcomings need to 
be addressed in the overall current state of the art.
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Vendor-Specific Implementations: Existing IBN 
solutions are often tailored to specific systems, 
limiting their interoperability and scalability across 
different vendor environments. For instance, a 
solution optimized for one vendor’s hardware 
may not function seamlessly with another’s.

Static Security Policies: These approaches rely 
heavily on predefined security policies, which require 
continuous manual updates to adapt to emerging 
threats. This reliance makes it difficult to swiftly 
respond to the rapidly evolving cyber landscape.

Limited Real-Time Adaptation: Current solu-
tions lack robust mechanisms for real-time network 
behavior analysis and adaptive threat response. 
The absence of these capabilities to analyze net-
work behavior in real time means missed oppor-
tunities for identifying and mitigating emerging 
threats before they can exploit vulnerabilities.

This article aims to advance the state of the art 
by addressing the critical limitations of current IBN 
solutions. Hence, this article makes the following 
contributions to solve the limitations and provide 
both Intent Fulfillment and Intent Assurance.

An Open Standard Security Framework: The 
proposed approach adopts a standard I2NSF 
framework with standardized communication 
protocols and data models, which enables the 
deployment of unified security policies effectively 
across multi-vendor environments, reducing com-
plexity and improving overall security posture. 
The standard framework enables interoperability 
and scalability to deploy security strategies effec-
tively across different vendor environments.

Adaptive Security Policies: The proposed 
approach extends the existing security policy 
translator to enable dynamic translation with the 
ever-evolving network security. It allows new secu-
rity solutions to be involved immediately within 
the network by allowing autonomous updates 
within the security policies and data models.

Real-Time Adaptive Response: The proposed 
approach integrates a new analytics component 

that utilizes machine learning algorithms to enable 
real-time network monitoring and adaptive threat 
response. It continuously collects and analyzes 
network traffic patterns and behaviors to detect 
anomalies and potential threats proactively, trig-
gering automated responses to mitigate risks 
swiftly and effectively.

Evaluation of the Proposed System for Via-
bility: The proposed approach is verified by 
evaluating the overall performance. A better 
understanding of the proposed system’s strengths 
and limitations can be obtained by testing the sys-
tem in various scenarios and configurations.

To make such contributions, we extended the 
architecture described by J. Kim et al. [4] by evolv-
ing the framework from a passive observer to an 
active guardian with the addition of a standardized 
Monitoring Interface [6] and a proposed Analytics 
Interface [7]. The new standardized interfaces allow 
the collection and analysis of network information 
to detect anomalies or deviations from the intended 
security policies. Additionally, the existing securi-
ty policy translator is extended to allow dynamic 
YANG data models. The subsequent sections will 
explain the details of the architecture, design, imple-
mentation, and evaluation of the proposed Intent-
Based Closed-Loop Security Control (ICSC) system.

Architecture of Intent-Driven System
This section provides an overview of the system 
that describes how it is organized to help the 
reader reach a common understanding of the 
structure and functionality of the proposed sys-
tem design. In this article, the previous system 
described in Intent-Based Cloud Services (IBCS) 
[4] is extended with a new component and new 
interfaces, as shown in the logical view in Fig. 1. 
The main components are as follows:
•	 I2NSF User: A user interacts with the I2NSF 

framework to manage network security 
by expressing their security requirements 
in terms of a high-level policy (i.e., intent). 

FIGURE 1. A new logical architecture view of I2NSF framework [4].
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The user can be a system administrator or 
authorized personnel responsible for net-
work security management.

•	 Security Controller: A key component of 
the I2NSF framework that is responsible for 
orchestrating the NSFs. It acts as a central enti-
ty that receives a high-level policy and trans-
lates it into low-level configurations that can be 
understood and implemented by the NSFs.

•	 Developer’s Management System (DMS): A 
component of the I2NSF framework that 
caters to the needs of the developers or ven-
dors of the NSFs. This system provides a plat-
form for developers to register and advertise 
their NSFs’ capabilities.

•	 Network Security Function (NSF): A virtual-
ized instance that provides network pro-
tection and enforces the defined security 
policies. NSFs can include various security 
functions such as firewalls, intrusion preven-
tion systems (IPS), and antivirus solutions.

•	 Analyzer: A component dedicated to collect-
ing and analyzing security-related data and 
events. It performs traffic analysis and the gen-
eration of reports or alerts. It helps to assess 
the effectiveness of security policies, detect 
potential threats, and make informed deci-
sions about network security management.
Communication between these components 

is built with the standardized interfaces by the 
I2NSF Working Group in the Internet Engineering 
Task Force (IETF). The following interfaces facili-
tate the I2NSF Framework.

Consumer-Facing Interface (CFI): The inter-
face through which users interact with the Secu-
rity Controller of the I2NSF Framework to express 
their security requirements and policies. The CFI 
abstracts the underlying complexity of the NSFs 
and provides a simplified view that users can use 
to interact with the I2NSF framework [8].

Registration Interface (RI): The interface that 
allows the DMS to register NSFs’ capabilities [9] 
with the Security Controller. The Registration Inter-
face can provide information such as their capa-
bilities, configuration requirements, NSF access 
information, and other relevant metadata [10].

NSF-Facing Interface (NFI): The interface that 
allows the Security Controller to interact with indi-
vidual NSFs. This interface provides the necessary 
mechanisms for the configuration and control of 
the NSFs, thus allowing the I2NSF framework to 
enforce the desired security policies to the appro-
priate NSFs [11].

Monitoring Interface (MI): The interface that 
enables the monitoring of status, performance, 
and security events related to the NSFs. It enables 

the implementation of an analyzer with real-time 
visibility in the operation of the NSFs and the 
overall security posture of the network [6].

Analytics Interface (AI): The interface that 
facilitates the analysis of security-related data for 
advanced security enhancement purposes. This 
Interface lets the security controller receive policy 
reconfigurations for the enhanced security ser-
vices and allows users to gain feedback informa-
tion for understanding and handling NSFs (e.g., 
overload and malfunction) [7].

Enabling Intent-Driven  
Network Management with Intent Assurance

In an Intent-Driven approach, administrators or 
users express their desired intent or objectives in a 
higher-level language that is more easily readable 
by humans. The specified intent is automatical-
ly translated into understandable configurations, 
abstracting complexity and technical details from 
the user. Intent-Based Cloud Services (IBCS) were 
proposed by J. Kim et al. [4], who provided a 
detailed explanation of the translation approach.

The extended I2NSF Framework enables the 
procedure of intent-driven network management 
by creating a closed-loop management system, 
as shown in Fig. 2. The whole procedure of 
intent-driven network management can be divid-
ed into several stages: 
•	 Intent specification
•	 Intent translation
•	 Intent enforcement
•	 Intent analysis (i.e., monitoring and observation)
•	 Intent adaptation (i.e., reconfiguration and 

report).

Intent Specification
In this stage, the I2NSF User expresses their intent 
or desired outcome in terms of high-level securi-
ty requirements. The user specifies their security 
requirements by using a user-friendly interface, 
which simplifies the process of entering inputs 
related to network security, making it accessible 
to users who may not have expertise in network 
technologies or security protocols. Then, it will 
construct a high-level security policy in an XML 
form. An example of a high-level security policy 
can be seen in the “high-level-policy.xml” available 
at https://codeocean.com/capsule/0816676/
tree/v2. In this example, the I2NSF User wants to 
let their clients access the web servers.

With this method, the underlying complexities 
of the network (i.e., types, resources, and topolo-
gy) are hidden from the users. This method shields 
users from the intricacies of network protocols, 
device configurations, capabilities, and security 
mechanisms. Hence, rather than having to deal 
with technical details and complex configurations, 
the users can focus on articulating their specific 
security needs and objectives using familiar termi-
nology and high-level concepts.

In the I2NSF Framework, intent specification 
is provided by the CFI YANG data model [8] that 
specifies the data types and encoding schemes 
so that high-level security requirements can be 
delivered to the Security Controller in the form of 
security policies. The YANG data model provides 
a complete method of security management with 
high-level security policies.

FIGURE 2. Managing an intent with a closed-loop security control in the 
I2NSF framework.
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However, this concept heavily relies on the 
next stage (i.e., intent translation) to properly fulfill 
the necessary requests of the user. Without intent 
translation, the expressed high-level security poli-
cies would remain as abstract concepts that can-
not be implemented in the security infrastructure.

Intent Translation
Intent translation is a crucial intermediary stage 
that transforms the user’s security requirements 
into the actual configuration for the NSFs. This 
process ensures that the security requirements 
are accurately captured and enforced within the 
network. The example high-level security policy 
will be translated into the corresponding low-lev-
el configuration shown in the “low-level-policy.
xml” file available at https://codeocean.com/cap-
sule/0816676/tree/v2. With the I2NSF frame-
work, the translator can generate the necessary 
low-level configuration based on the NSFs’ capa-
bilities [9]. The I2NSF framework allows the NSFs 
of multiple vendors to be used by the syntax for 
this low-level configuration, which is standardized 
with the NFI YANG data model [11].

This translation process has been addressed in 
a previous work by J. Kim, et al. [4]. The proposed 
security policy translator performs intent trans-
lation using three important components: data 
extractor, data converter, and policy generator. 
The data extractor extracts and verifies a high-lev-
el security policy using the deterministic finite 
automaton (DFA) concept. The data converter 
transforms the extracted information into specific 
low-level configuration data for the appropriate 
NSFs. The policy generator produces the actual 
low-level configurations in XML form according to 
the NFI YANG data model [11].

This previous work did not consider an 
approach to perform the mapping between 
the high-level and low-level YANG data models 
and how the translation service works over time 
when the data models are updated. The previ-
ous approach lacks a method to provide a fully 
automated translation. Hence, as shown in Fig. 
3, this article improves the translator by adding 
a component that handles the mapping between 
high-level and low-level data models automatical-
ly, that is, a data model mapper [12].

The data model mapper is designed specifically 
for the I2NSF Framework. It leverages the design 
similarity between the high-level and low-level YANG 
data models. As the data structure of a YANG data 
model is a tree data structure, the two YANG data 
models can be compared on each linear node (i.e., 
an attribute entity from the root to the leaf in a 
YANG tree) to find the closest similarity. The similar-
ity is calculated using a tree edit distance algorithm 
called Zhang-Shasha (ZSS) algorithm. In this algo-
rithm, linear nodes from the high-level YANG data 
model are systematically compared to every linear 
node in the low-level YANG data model.

Through this comparison, the mapper identi-
fies the most similar linear nodes (i.e., the nodes 
requiring the minimum number of operations) 
which are projected as the mapping nodes. For 
example, the high-level nodes of “i2nsf-cfi-poli-
cy/condition/firewall/destination” will have high 
similarity with the low-level nodes of “i2nsf-secu-
rity-policy/condition/ipv4/destination-ipv4-net-
work” and “i2nsf-security-policy/condition/tcp/

destination-port-numbers.” Hence, the two linear 
nodes are projected as the mapping nodes. The 
result is saved to the NSF database so that it can 
be used by the data converter to correctly trans-
form security requirements into security policies.

Furthermore, the Policy Generator is updated 
by utilizing a PyangBind-based policy generation 
[12] to automatically generate low-level security 
policies and ensure that they comply with the NFI 
YANG data model [11]. Note that PyangBind is 
open source, available at https://github.com/
robshakir/pyangbind. The integration of PyangBind 
allows data models to be dynamic and ensures 
responsiveness to evolving network threats.

The addition of the data model mapper and 
policy generator allows the translation process to 
become fully automated and effective whenev-
er the data models experience updates or exten-
sions. By dynamically adapting to evolving data 
models, the improved security policy translator 
can help maintain a robust and up-to-date net-
work security infrastructure. Note that the detailed 
explanation of the latest security policy translator 
can be seen in our work in [12].

Intent Enforcement
After the translation, the security policies are 
enforced on the NSFs accordingly. The Security 
Controller communicates with the NSFs through 
the standardized NFI [11], allowing for the con-
figuration of NSFs from multiple different vendors. 
The NSFs start enforcing the security policies 
defined in the translated intent. This includes fire-
walls, URL filtering, intrusion detection and pre-
vention systems (IDS/IPS), traffic monitoring, and 
antivirus solutions. The NSFs apply these policies 
to inspect and control network traffic, thus ensur-
ing compliance with the user’s intent and provid-
ing the desired security services.

During intent enforcement, the Security Con-
troller ensures synchronization and coordination 
among the NSFs with Service Function Chaining 
(SFC). As shown in Fig. 4, the framework ensures 
that the NSFs operate collectively and consis-
tently to enforce the intended security policies 
across the network. For example, network flows 
with HTTP and HTTPS protocols must be directed 
through the Firewall first and then through the 
Web Filter for further inspection, while other pro-
tocols will only be directed through the Firewall. 
This is done with a flow classifier to classify the 
type of network flows that enter or exit the net-

FIGURE 3. Extended architecture of security policy translator for I2NSF 
framework.
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work. It then activates SFC by pairing the ports 
according to the translated intent.

The Security Controller configures SFC auto-
matically through the deployment of the SFC 
configurations to the NSFs involved in the service 
chain and the routing configuration with the flow 
classifier by directing packets to the appropriate 
NSFs in the previously defined order. This con-
figuration deployment ensures that the NSFs are 
aware of both their placement within the SFC and 
the sequence in which they need to be traversed.

Intent Analysis
Once the intent is enforced, the framework per-
forms an intent analysis (i.e., monitoring and 
observation) to ensure that the implemented 
security services align with the user’s high-level 
security requirements. This stage involves moni-
toring data from the NSFs in real time using the 
Monitoring Interface YANG data model [6]. This 
data includes network traffic, system logs, and 
security events to provide visibility into the poten-
tial vulnerabilities, attack patterns, and the impact 
of security measures on the overall network.

To prevent data overload, the Analyzer 
employs a subscription-based model. This model 
ensures that only specific types of data relevant 
to the intent analysis are collected and analyzed, 
thus reducing the overall data size and optimiz-
ing resource utilization. In this subscription-based 
model, the Analyzer initiates an agreement with 
the NSFs to define the types and categories of 
data that need to be collected. Moreover, the 
subscription-based model allows for flexibility 
and scalability in data collection. The agreements 
between the Analyzer and NSFs can be dynami-
cally adjusted based on evolving security needs.

The intent analysis also enables the detection of 
security events and anomalies within the network 
to identify potential threats. The analysis also helps 
to evaluate the inefficiencies in the implemented 
security measures based on the performance met-
rics. To enhance the analysis results, the Analyzer 
utilizes machine learning techniques to improve 
the accuracy and efficiency of an intent. These 
results are expected to help provide appropriate 
response measures to mitigate the identified risks 
and prevent further security breaches.

As an example, in the Intent Analysis stage, the 
Analyzer monitors incoming network traffic in real 
time. It collects monitoring data from various net-
work devices to analyze traffic patterns and identi-
fy potential Distributed Denial of Service (DDoS) 
attacks. At one point, the Analyzer detects a sud-
den surge in incoming traffic to a specific web 
server’s IP address. It analyzes the traffic patterns, 
such as the source IP addresses, packet sizes, and 

request rates, to determine if the surge is consis-
tent with a DDoS attack.

Using machine learning algorithms, for exam-
ple, decision tree algorithm, the Analyzer cor-
relates these traffic patterns with known DDoS 
attack signatures to assess the likelihood of an 
ongoing attack. It may also analyze network flow 
data to identify anomalous behaviors, such as 
a large number of connections from a single IP 
address or unusual packet fragmentation patterns.

Intent Adaptation
Based on the results obtained in the previous 
stage, the I2NSF framework may initiate adaptation 
actions if any issues are identified. Another import-
ant role of the Analyzer is to provide feedback 
about necessary adjustments that must be made. 
It is important to ensure that the network security 
measures remain aligned with the desired intent 
and address the evolving security challenges.

Two models are providing intent adaptation in 
the I2NSF Framework: reconfiguration and report 
[7]. Reconfiguration involves rearranging security 
policies in different forms to mitigate threats and 
improve the quality of network security. Reconfig-
uration aims to adapt the network security mea-
sures to align with the desired intent and address 
any identified issues. By reconfiguring the security 
policies based on the analysis results, the I2NSF 
framework can effectively respond to evolving 
security threats and changing network conditions, 
thus ensuring the continuous alignment of securi-
ty measures with the desired intent.

A report is the feedback information given to 
the I2NSF User to handle risks that cannot be 
handled by reconfiguration, for example, system 
resource malfunction or threats exceeding the 
capabilities of existing services. It highlights specif-
ic areas that require further action from the user 
to handle the identified risks, thus enabling the 
user to make informed decisions [7].

In the previous example of a DDoS threat 
detected in the Intent Analysis, the Analyzer must 
create a reconfiguration to try and stop the threat. 
A decision-making machine learning algorithm 
(e.g., decision tree algorithm) is implemented 
for the reconfiguration. An action space such as 
adjusting firewall rules, implementing rate limiting, 
or rerouting traffic through a DDoS protection ser-
vice. The system observes itself and verifies wheth-
er the system successfully reduces the impact of 
the attack or whether the attack persists. An exam-
ple of a reconfiguration security policy can be seen 
in the “reconfiguration.xml” available at https://
codeocean.com/capsule/0816676/tree/v2.

If the impact of the attack persists, the Ana-
lyzer will try different actions in the action space 
by removing the previous reconfiguration action. 
Changing the policies every time may cause insta-
bility in the system. Hence, the reconfiguration 
can be paired with the report to make sure that a 
human administrator can monitor the changes, and 
if any reconfiguration action fails, the administrator 
can take different actions to secure the network.

Implementation and Performance Evaluation
This section discusses the implementation and 
evaluation of ICSC to assess its effectiveness and 
efficiency with practical aspects of deploying 
ICSC in a specific target scenario.

FIGURE 4. Enforcement of service function chaining.
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Proof-of-Concept Implementation

The ICSC is implemented over the OpenStack 
cloud computing service. The I2NSF Framework 
components are built in a virtual cloud environ-
ment using an Ubuntu 20.04 cloud image. The 
intent specification is built with the Consumer-Fac-
ing Interface YANG data model [8] on a Node.
js server environment with the React library and 
delivered over RESTCONF [13] to the Security 
Controller. The intent translation in the Securi-
ty Controller is performed using Python and 
MongoDB, while enforcement is implemented 
with ConfD, running the NETCONF server [14] 
accepting an XML configuration based on the 
NSF-Facing Interface YANG data model [11]. 
NSFs leverage an open source IDS/IPS software 
called Suricata for network analysis and threat 
detection. For intent analysis, NSFs employ a sub-
scription-based notification system for the Ana-
lyzer through NETCONF event notifications [15] 
with ConfD. The Analyzer subscribes to moni-
toring data via the Monitoring Interface [6] with 
multiple NSFs, utilizing a simple machine learning 
technique (e.g., decision tree algorithm) for Intent 
Assurance in the I2NSF Framework.

In this Proof of Concept (PoC), all compo-
nents of the I2NSF Framework play a role in 
defending the protected network through contin-
uous intent analysis and intent adaptation. In this 
scenario, normal clients are accessing a protect-
ed network that can cope with a DDoS attack. 
Each component has distinct responsibilities for 
mitigating the attack as follows. The I2NSF User 
monitors the system and assists it if it is necessary 
to handle attacks when alerts are received. The 
Security Controller receives reconfigurations and 
dispatches them to the NSFs, sometimes request-
ing additional NSFs from the DMS to aid in attack 
mitigation. The DMS may receive requests to 
deploy new NSFs. NSFs continue working to mit-
igate attacks based on reconfigurations and to 
collect network information. Finally, the Analyzer 
remains vigilant, observing the network to assess 
changes in the threat.

Note that the implementation of the I2NSF sys-
tem has been proved through several IETF hack-
athon projects. This implementation involves the 
final I2NSF YANG data models that are approved 
as RFCs by the IETF. The source code and demon-
stration video clip of the implementation are avail-
able at https://github.com/jaehoonpauljeong/
I2NSF-Closed-Loop-Security-Control and https://
youtu.be/OWNJbF7wGgs, respectively.

Performance Evaluation
To evaluate our proof-of-concept implementa-
tion, we performed a simple simulation with var-
ious numbers of clients to acquire its impact on 
the Mean Time to Detect (MTTD) and the Mean 
Time to Respond (MTTR) as performance metrics. 
MTTD is the average time it takes to discover a 
potential security issue, while MTTR is the average 
time it takes to completely eliminate the problem 
after it has been discovered.

Figure 5 shows the MTTD and MTTR of both 
ICSC and a manual operation. The MTTD and 
MTTR of the manual operation increase expo-
nentially with the involvement of more clients. A 
constant number as a common duration is used 

to represent a baseline time that is required for 
a human operator’s operations, independent of 
the number of clients. This number includes fac-
tors such as the time it takes for a human opera-
tor to recognize a security threat, access relevant 
information, and take appropriate actions. The 
exponential increase is due to the higher work-
load and complexity of manually detecting and 
obtaining the necessary information when more 
clients are involved.

It is important to note that the MTTD and 
MTTR values for the manual operation are derived 
from a controlled Proof-of-Concept environment. 
By conducting experiments in the controlled 
environment, specific variables can be isolated 
and systematically measured for their impact on 
MTTD and MTTR. This controlled setting elim-
inates external variables that could otherwise 
affect those MTTD and MTTR values, providing a 
clear benchmark for evaluating the effectiveness 
of the ICSC system.

On the other hand, as shown in Fig. 5, the 
MTTD and MTTR of ICSC are not significantly 
impacted by the number of clients. Furthermore, 
ICSC enables faster detection and reaction time 
compared to manual operation. Moreover, the 
automatic adaptation of ICSC allows for continu-
ous surveillance of the network, regardless of the 
availability of an operator.

Research Challenges
The idea of ICSC has been proposed herein with 
a proof-of-concept implementation. ICSC needs 
to be polished before it can be deployed in the 
industry. The following research challenges must 
be addressed to enhance its effectiveness:

Adaptive Policy Enforcement: It is import-
ant to ensure the effectiveness of security policy 
enforcement in a dynamic and evolving network 
environment. This includes addressing challenges 
that are related to policy conflicts, policy updates, 
and consistent enforcement across different NSFs. 
The framework must ensure that the policies are 
well-adapted with no conflict between any of them.

Real-time Threat Detection: Detecting threats 
in a real-world network is a large-scale research 
task that requires advanced techniques for real-
time threat detection and analysis to identify and 
respond to emerging security threats. This involves 
leveraging machine learning, anomaly detection, 
and behavioral analysis to detect and mitigate both 
known and unknown threats in real time.

FIGURE 5. The performance of ICSC vs. manual operation.
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ICSC provides two IBN func-
tionalities: Intent Fulfilment 
and Intent Assurance. ICSC 

expands upon IBCS by adding 
a data model mapper into 

the security policy translator 
to enable fully automated 

and effective translation to 
achieve Intent Fulfilment. 
ICSC also provides Intent 
Assurance by utilizing a 

closed-loop security control 
system to align the security 

policies that have been 
deployed with the desired 
intent based on an anal-
ysis of numerous metrics 

obtained from the monitoring 
process.

Proactive Defense: The feedback delivered 
to the Security Controller to prevent concurring 
attacks must be developed with adaptability and 
responsiveness in mind. This involves designing 
feedback mechanisms that not only provide time-
ly and accurate information about ongoing attacks 
but also dynamically adapt to the changing threat 
landscape. This requires continuous refinement 
of the feedback mechanisms to proactively stay 
ahead of emerging threats.

Conclusion
ICSC provides two IBN functionalities: Intent Ful-
filment and Intent Assurance. ICSC expands upon 
IBCS by adding a data model mapper into the secu-
rity policy translator to enable fully automated and 
effective translation to achieve Intent Fulfilment. 
ICSC also provides Intent Assurance by utilizing 
a closed-loop security control system to align the 
security policies that have been deployed with the 
desired intent based on an analysis of numerous 
metrics obtained from the monitoring process. As 
future work, ICSC will be enhanced for real-world 
network environments, including 5G core networks 
and Open Radio Access Network (O-RAN).
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