
IEEE Communications Magazine • Accepted for Publication1 0163-6804/24/$25.00 © 2024 IEEE

Abstract
This article proposes an intent-based closed-

loop security control (ICSC) system for intelligent
and effective security service management. Recent
advancements in computer network technol-
ogies have led to the emergence of intent-based
networking (IBN), significantly improving network
security management. This article presents novel
contributions to IBN, emphasizing intent fulfillment
and intent assurance within network security. The
proposed approach in this article utilizes a stan-
dardized framework called interface to network
security functions (I2NSF) with standardized com-
munication protocols and data models, allowing the
deployment of security policies across multi-vendor
environments. Furthermore, the existing security pol-
icy translator for an intent is extended to support
dynamic translation, enabling the immediate inte-
gration of new security solutions into the network.
An analytics component with machine learning is
also introduced for continuous network monitor-
ing, proactively identifying anomalies, and trigger-
ing automated threat mitigation. Additionally, the
ICSC system’s performance is assessed in various
scenarios and configurations, providing a thorough
understanding of its strengths and limitations. Thus,
it is shown that the ICSC system can establish robust
and adaptive network security management.

Introduction
The evolution of technology has revolutionized
computer network design and management. Tra-
ditional networks relied on specialized, proprietary
hardware devices like routers, switches, and fire-
walls, leading to inflexible and expensive infrastruc-
tures. To address these limitations, new networking
paradigms called Software-Defined Networking
(SDN) and Network Functions Virtualization (NFV)
have emerged in attempts to provide a more agile,
efficient, and cost-effective networking infrastruc-
ture. However, the complexity and dynamism of
these networks pose new challenges for network
administrators in terms of the effective manage-
ment and orchestration of networks. To address
these challenges, a new paradigm called Intent-
Based Networking (IBN) has emerged.

IBN takes the concept of SDN and NFV a
step further by adding a layer of abstraction that
allows network administrators to define the intent

or objectives of the network, rather than specify-
ing the specific configuration of network devices.
This approach simplifies network management by
automating the translation of a high-level intent
into low-level network configurations. Thus, allow-
ing network administrators to focus on the desired
outcome of the network rather than the configu-
ration. As defined in RFC 9315 in [1], the concept
of IBN encompasses two crucial functionalities:
•	 Intent Fulfillment: This functionality enables

users to communicate their network intent
and perform the necessary actions to
achieve it. It includes optimizing outcomes,
orchestrating configuration operations, and
translating a high-level network intent into
lower-level network configurations.

•	 Intent Assurance: This functionality allows
users to validate and monitor network align-
ment with the desired intent. It provides
feedback to optimize fulfillment functions,
assess effectiveness, and address network
behavior that gradually deviates from the
desired intent over time.
The concept of IBN has been developed by

several works discussed in [2], each with different
strategies to achieve the solution. These works
have contributed significantly to the advance-
ment of IBN, demonstrating various strategies and
implementations. However, most of the works
are implemented in a very specific way for their
respective system. This poses a limitation when
attempting to scale up across different environ-
ments created by various vendors.

To overcome this issue, the Interface to Net-
work Security Function (I2NSF) Framework [3]
provides standardized software interfaces and
data models designed specifically to support dif-
ferent types of Network Security Functions (NSFs).
To apply IBN to network security, J. Kim et al. [4]
proposed Intent-Based Cloud Services (IBCS) that
enable an automated and virtualized security sys-
tem with easy and flexible security services by
utilizing the I2NSF Framework. Furthermore, C.
Basile et al. [5] provide automated enforcement
of security policies with optimal selection of NSFs.

While works in [4] and [5] represent a notable
attempt to automate and virtualize security systems,
some inherent challenges and shortcomings need to
be addressed in the overall current state of the art.

Patrick Lingga, Jaehoon (Paul) Jeong, and Linda Dunbar

Patrick Lingga and Jaehoon Jeong (corresponding author) are with Sungkyunkwan University, Republic of Korea;
Linda Dunbar is with Futurewei Technologies, USA. Digital Object Identifier: 10.1109/MCOM.001.2400022

ICSC: Intent-Based Closed-Loop
Security Control System for

Cloud-Based Security Services

NETWORK SOFTWARIZATION AND MANAGEMENT

The authors present novel
contributions to intent-based
networking, emphasizing intent
fulfillment and intent assurance
within network security.

This article has been accepted for inclusion in a future issue of this magazine. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 24,2024 at 02:51:15 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • Accepted for Publication 2

Vendor-Specific Implementations: Existing IBN
solutions are often tailored to specific systems,
limiting their interoperability and scalability across
different vendor environments. For instance, a
solution optimized for one vendor’s hardware
may not function seamlessly with another’s.

Static Security Policies: These approaches rely
heavily on predefined security policies, which require
continuous manual updates to adapt to emerging
threats. This reliance makes it difficult to swiftly
respond to the rapidly evolving cyber landscape.

Limited Real-Time Adaptation: Current solu-
tions lack robust mechanisms for real-time network
behavior analysis and adaptive threat response.
The absence of these capabilities to analyze net-
work behavior in real time means missed oppor-
tunities for identifying and mitigating emerging
threats before they can exploit vulnerabilities.

This article aims to advance the state of the art
by addressing the critical limitations of current IBN
solutions. Hence, this article makes the following
contributions to solve the limitations and provide
both Intent Fulfillment and Intent Assurance.

An Open Standard Security Framework: The
proposed approach adopts a standard I2NSF
framework with standardized communication
protocols and data models, which enables the
deployment of unified security policies effectively
across multi-vendor environments, reducing com-
plexity and improving overall security posture.
The standard framework enables interoperability
and scalability to deploy security strategies effec-
tively across different vendor environments.

Adaptive Security Policies: The proposed
approach extends the existing security policy
translator to enable dynamic translation with the
ever-evolving network security. It allows new secu-
rity solutions to be involved immediately within
the network by allowing autonomous updates
within the security policies and data models.

Real-Time Adaptive Response: The proposed
approach integrates a new analytics component

that utilizes machine learning algorithms to enable
real-time network monitoring and adaptive threat
response. It continuously collects and analyzes
network traffic patterns and behaviors to detect
anomalies and potential threats proactively, trig-
gering automated responses to mitigate risks
swiftly and effectively.

Evaluation of the Proposed System for Via-
bility: The proposed approach is verified by
evaluating the overall performance. A better
understanding of the proposed system’s strengths
and limitations can be obtained by testing the sys-
tem in various scenarios and configurations.

To make such contributions, we extended the
architecture described by J. Kim et al. [4] by evolv-
ing the framework from a passive observer to an
active guardian with the addition of a standardized
Monitoring Interface [6] and a proposed Analytics
Interface [7]. The new standardized interfaces allow
the collection and analysis of network information
to detect anomalies or deviations from the intended
security policies. Additionally, the existing securi-
ty policy translator is extended to allow dynamic
YANG data models. The subsequent sections will
explain the details of the architecture, design, imple-
mentation, and evaluation of the proposed Intent-
Based Closed-Loop Security Control (ICSC) system.

Architecture of Intent-Driven System
This section provides an overview of the system
that describes how it is organized to help the
reader reach a common understanding of the
structure and functionality of the proposed sys-
tem design. In this article, the previous system
described in Intent-Based Cloud Services (IBCS)
[4] is extended with a new component and new
interfaces, as shown in the logical view in Fig. 1.
The main components are as follows:
•	 I2NSF User: A user interacts with the I2NSF

framework to manage network security
by expressing their security requirements
in terms of a high-level policy (i.e., intent).

FIGURE 1. A new logical architecture view of I2NSF framework [4].

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 24,2024 at 02:51:15 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • Accepted for Publication3

The user can be a system administrator or
authorized personnel responsible for net-
work security management.

•	 Security Controller: A key component of
the I2NSF framework that is responsible for
orchestrating the NSFs. It acts as a central enti-
ty that receives a high-level policy and trans-
lates it into low-level configurations that can be
understood and implemented by the NSFs.

•	 Developer’s Management System (DMS): A
component of the I2NSF framework that
caters to the needs of the developers or ven-
dors of the NSFs. This system provides a plat-
form for developers to register and advertise
their NSFs’ capabilities.

•	 Network Security Function (NSF): A virtual-
ized instance that provides network pro-
tection and enforces the defined security
policies. NSFs can include various security
functions such as firewalls, intrusion preven-
tion systems (IPS), and antivirus solutions.

•	 Analyzer: A component dedicated to collect-
ing and analyzing security-related data and
events. It performs traffic analysis and the gen-
eration of reports or alerts. It helps to assess
the effectiveness of security policies, detect
potential threats, and make informed deci-
sions about network security management.
Communication between these components

is built with the standardized interfaces by the
I2NSF Working Group in the Internet Engineering
Task Force (IETF). The following interfaces facili-
tate the I2NSF Framework.

Consumer-Facing Interface (CFI): The inter-
face through which users interact with the Secu-
rity Controller of the I2NSF Framework to express
their security requirements and policies. The CFI
abstracts the underlying complexity of the NSFs
and provides a simplified view that users can use
to interact with the I2NSF framework [8].

Registration Interface (RI): The interface that
allows the DMS to register NSFs’ capabilities [9]
with the Security Controller. The Registration Inter-
face can provide information such as their capa-
bilities, configuration requirements, NSF access
information, and other relevant metadata [10].

NSF-Facing Interface (NFI): The interface that
allows the Security Controller to interact with indi-
vidual NSFs. This interface provides the necessary
mechanisms for the configuration and control of
the NSFs, thus allowing the I2NSF framework to
enforce the desired security policies to the appro-
priate NSFs [11].

Monitoring Interface (MI): The interface that
enables the monitoring of status, performance,
and security events related to the NSFs. It enables

the implementation of an analyzer with real-time
visibility in the operation of the NSFs and the
overall security posture of the network [6].

Analytics Interface (AI): The interface that
facilitates the analysis of security-related data for
advanced security enhancement purposes. This
Interface lets the security controller receive policy
reconfigurations for the enhanced security ser-
vices and allows users to gain feedback informa-
tion for understanding and handling NSFs (e.g.,
overload and malfunction) [7].

Enabling Intent-Driven
Network Management with Intent Assurance

In an Intent-Driven approach, administrators or
users express their desired intent or objectives in a
higher-level language that is more easily readable
by humans. The specified intent is automatical-
ly translated into understandable configurations,
abstracting complexity and technical details from
the user. Intent-Based Cloud Services (IBCS) were
proposed by J. Kim et al. [4], who provided a
detailed explanation of the translation approach.

The extended I2NSF Framework enables the
procedure of intent-driven network management
by creating a closed-loop management system,
as shown in Fig. 2. The whole procedure of
intent-driven network management can be divid-
ed into several stages:
•	 Intent specification
•	 Intent translation
•	 Intent enforcement
•	 Intent analysis (i.e., monitoring and observation)
•	 Intent adaptation (i.e., reconfiguration and

report).

Intent Specification
In this stage, the I2NSF User expresses their intent
or desired outcome in terms of high-level securi-
ty requirements. The user specifies their security
requirements by using a user-friendly interface,
which simplifies the process of entering inputs
related to network security, making it accessible
to users who may not have expertise in network
technologies or security protocols. Then, it will
construct a high-level security policy in an XML
form. An example of a high-level security policy
can be seen in the “high-level-policy.xml” available
at https://codeocean.com/capsule/0816676/
tree/v2. In this example, the I2NSF User wants to
let their clients access the web servers.

With this method, the underlying complexities
of the network (i.e., types, resources, and topolo-
gy) are hidden from the users. This method shields
users from the intricacies of network protocols,
device configurations, capabilities, and security
mechanisms. Hence, rather than having to deal
with technical details and complex configurations,
the users can focus on articulating their specific
security needs and objectives using familiar termi-
nology and high-level concepts.

In the I2NSF Framework, intent specification
is provided by the CFI YANG data model [8] that
specifies the data types and encoding schemes
so that high-level security requirements can be
delivered to the Security Controller in the form of
security policies. The YANG data model provides
a complete method of security management with
high-level security policies.

FIGURE 2. Managing an intent with a closed-loop security control in the
I2NSF framework.

I2NSF
User

Analyzer

NSFs

Security
Controller

Specification

Reconfiguration

AnalysisReport

Enforcement1

2

45

5

TranslationTranslation
3

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 24,2024 at 02:51:15 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • Accepted for Publication 4

However, this concept heavily relies on the
next stage (i.e., intent translation) to properly fulfill
the necessary requests of the user. Without intent
translation, the expressed high-level security poli-
cies would remain as abstract concepts that can-
not be implemented in the security infrastructure.

Intent Translation
Intent translation is a crucial intermediary stage
that transforms the user’s security requirements
into the actual configuration for the NSFs. This
process ensures that the security requirements
are accurately captured and enforced within the
network. The example high-level security policy
will be translated into the corresponding low-lev-
el configuration shown in the “low-level-policy.
xml” file available at https://codeocean.com/cap-
sule/0816676/tree/v2. With the I2NSF frame-
work, the translator can generate the necessary
low-level configuration based on the NSFs’ capa-
bilities [9]. The I2NSF framework allows the NSFs
of multiple vendors to be used by the syntax for
this low-level configuration, which is standardized
with the NFI YANG data model [11].

This translation process has been addressed in
a previous work by J. Kim, et al. [4]. The proposed
security policy translator performs intent trans-
lation using three important components: data
extractor, data converter, and policy generator.
The data extractor extracts and verifies a high-lev-
el security policy using the deterministic finite
automaton (DFA) concept. The data converter
transforms the extracted information into specific
low-level configuration data for the appropriate
NSFs. The policy generator produces the actual
low-level configurations in XML form according to
the NFI YANG data model [11].

This previous work did not consider an
approach to perform the mapping between
the high-level and low-level YANG data models
and how the translation service works over time
when the data models are updated. The previ-
ous approach lacks a method to provide a fully
automated translation. Hence, as shown in Fig.
3, this article improves the translator by adding
a component that handles the mapping between
high-level and low-level data models automatical-
ly, that is, a data model mapper [12].

The data model mapper is designed specifically
for the I2NSF Framework. It leverages the design
similarity between the high-level and low-level YANG
data models. As the data structure of a YANG data
model is a tree data structure, the two YANG data
models can be compared on each linear node (i.e.,
an attribute entity from the root to the leaf in a
YANG tree) to find the closest similarity. The similar-
ity is calculated using a tree edit distance algorithm
called Zhang-Shasha (ZSS) algorithm. In this algo-
rithm, linear nodes from the high-level YANG data
model are systematically compared to every linear
node in the low-level YANG data model.

Through this comparison, the mapper identi-
fies the most similar linear nodes (i.e., the nodes
requiring the minimum number of operations)
which are projected as the mapping nodes. For
example, the high-level nodes of “i2nsf-cfi-poli-
cy/condition/firewall/destination” will have high
similarity with the low-level nodes of “i2nsf-secu-
rity-policy/condition/ipv4/destination-ipv4-net-
work” and “i2nsf-security-policy/condition/tcp/

destination-port-numbers.” Hence, the two linear
nodes are projected as the mapping nodes. The
result is saved to the NSF database so that it can
be used by the data converter to correctly trans-
form security requirements into security policies.

Furthermore, the Policy Generator is updated
by utilizing a PyangBind-based policy generation
[12] to automatically generate low-level security
policies and ensure that they comply with the NFI
YANG data model [11]. Note that PyangBind is
open source, available at https://github.com/
robshakir/pyangbind. The integration of PyangBind
allows data models to be dynamic and ensures
responsiveness to evolving network threats.

The addition of the data model mapper and
policy generator allows the translation process to
become fully automated and effective whenev-
er the data models experience updates or exten-
sions. By dynamically adapting to evolving data
models, the improved security policy translator
can help maintain a robust and up-to-date net-
work security infrastructure. Note that the detailed
explanation of the latest security policy translator
can be seen in our work in [12].

Intent Enforcement
After the translation, the security policies are
enforced on the NSFs accordingly. The Security
Controller communicates with the NSFs through
the standardized NFI [11], allowing for the con-
figuration of NSFs from multiple different vendors.
The NSFs start enforcing the security policies
defined in the translated intent. This includes fire-
walls, URL filtering, intrusion detection and pre-
vention systems (IDS/IPS), traffic monitoring, and
antivirus solutions. The NSFs apply these policies
to inspect and control network traffic, thus ensur-
ing compliance with the user’s intent and provid-
ing the desired security services.

During intent enforcement, the Security Con-
troller ensures synchronization and coordination
among the NSFs with Service Function Chaining
(SFC). As shown in Fig. 4, the framework ensures
that the NSFs operate collectively and consis-
tently to enforce the intended security policies
across the network. For example, network flows
with HTTP and HTTPS protocols must be directed
through the Firewall first and then through the
Web Filter for further inspection, while other pro-
tocols will only be directed through the Firewall.
This is done with a flow classifier to classify the
type of network flows that enter or exit the net-

FIGURE 3. Extended architecture of security policy translator for I2NSF
framework.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 24,2024 at 02:51:15 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • Accepted for Publication5

work. It then activates SFC by pairing the ports
according to the translated intent.

The Security Controller configures SFC auto-
matically through the deployment of the SFC
configurations to the NSFs involved in the service
chain and the routing configuration with the flow
classifier by directing packets to the appropriate
NSFs in the previously defined order. This con-
figuration deployment ensures that the NSFs are
aware of both their placement within the SFC and
the sequence in which they need to be traversed.

Intent Analysis
Once the intent is enforced, the framework per-
forms an intent analysis (i.e., monitoring and
observation) to ensure that the implemented
security services align with the user’s high-level
security requirements. This stage involves moni-
toring data from the NSFs in real time using the
Monitoring Interface YANG data model [6]. This
data includes network traffic, system logs, and
security events to provide visibility into the poten-
tial vulnerabilities, attack patterns, and the impact
of security measures on the overall network.

To prevent data overload, the Analyzer
employs a subscription-based model. This model
ensures that only specific types of data relevant
to the intent analysis are collected and analyzed,
thus reducing the overall data size and optimiz-
ing resource utilization. In this subscription-based
model, the Analyzer initiates an agreement with
the NSFs to define the types and categories of
data that need to be collected. Moreover, the
subscription-based model allows for flexibility
and scalability in data collection. The agreements
between the Analyzer and NSFs can be dynami-
cally adjusted based on evolving security needs.

The intent analysis also enables the detection of
security events and anomalies within the network
to identify potential threats. The analysis also helps
to evaluate the inefficiencies in the implemented
security measures based on the performance met-
rics. To enhance the analysis results, the Analyzer
utilizes machine learning techniques to improve
the accuracy and efficiency of an intent. These
results are expected to help provide appropriate
response measures to mitigate the identified risks
and prevent further security breaches.

As an example, in the Intent Analysis stage, the
Analyzer monitors incoming network traffic in real
time. It collects monitoring data from various net-
work devices to analyze traffic patterns and identi-
fy potential Distributed Denial of Service (DDoS)
attacks. At one point, the Analyzer detects a sud-
den surge in incoming traffic to a specific web
server’s IP address. It analyzes the traffic patterns,
such as the source IP addresses, packet sizes, and

request rates, to determine if the surge is consis-
tent with a DDoS attack.

Using machine learning algorithms, for exam-
ple, decision tree algorithm, the Analyzer cor-
relates these traffic patterns with known DDoS
attack signatures to assess the likelihood of an
ongoing attack. It may also analyze network flow
data to identify anomalous behaviors, such as
a large number of connections from a single IP
address or unusual packet fragmentation patterns.

Intent Adaptation
Based on the results obtained in the previous
stage, the I2NSF framework may initiate adaptation
actions if any issues are identified. Another import-
ant role of the Analyzer is to provide feedback
about necessary adjustments that must be made.
It is important to ensure that the network security
measures remain aligned with the desired intent
and address the evolving security challenges.

Two models are providing intent adaptation in
the I2NSF Framework: reconfiguration and report
[7]. Reconfiguration involves rearranging security
policies in different forms to mitigate threats and
improve the quality of network security. Reconfig-
uration aims to adapt the network security mea-
sures to align with the desired intent and address
any identified issues. By reconfiguring the security
policies based on the analysis results, the I2NSF
framework can effectively respond to evolving
security threats and changing network conditions,
thus ensuring the continuous alignment of securi-
ty measures with the desired intent.

A report is the feedback information given to
the I2NSF User to handle risks that cannot be
handled by reconfiguration, for example, system
resource malfunction or threats exceeding the
capabilities of existing services. It highlights specif-
ic areas that require further action from the user
to handle the identified risks, thus enabling the
user to make informed decisions [7].

In the previous example of a DDoS threat
detected in the Intent Analysis, the Analyzer must
create a reconfiguration to try and stop the threat.
A decision-making machine learning algorithm
(e.g., decision tree algorithm) is implemented
for the reconfiguration. An action space such as
adjusting firewall rules, implementing rate limiting,
or rerouting traffic through a DDoS protection ser-
vice. The system observes itself and verifies wheth-
er the system successfully reduces the impact of
the attack or whether the attack persists. An exam-
ple of a reconfiguration security policy can be seen
in the “reconfiguration.xml” available at https://
codeocean.com/capsule/0816676/tree/v2.

If the impact of the attack persists, the Ana-
lyzer will try different actions in the action space
by removing the previous reconfiguration action.
Changing the policies every time may cause insta-
bility in the system. Hence, the reconfiguration
can be paired with the report to make sure that a
human administrator can monitor the changes, and
if any reconfiguration action fails, the administrator
can take different actions to secure the network.

Implementation and Performance Evaluation
This section discusses the implementation and
evaluation of ICSC to assess its effectiveness and
efficiency with practical aspects of deploying
ICSC in a specific target scenario.

FIGURE 4. Enforcement of service function chaining.

Flow
Classifier

Firewall Web Filter

Internet

Protected
Network

Protocol: HTTP, HTTPS

Protocol: Other

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 24,2024 at 02:51:15 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • Accepted for Publication 6

Proof-of-Concept Implementation

The ICSC is implemented over the OpenStack
cloud computing service. The I2NSF Framework
components are built in a virtual cloud environ-
ment using an Ubuntu 20.04 cloud image. The
intent specification is built with the Consumer-Fac-
ing Interface YANG data model [8] on a Node.
js server environment with the React library and
delivered over RESTCONF [13] to the Security
Controller. The intent translation in the Securi-
ty Controller is performed using Python and
MongoDB, while enforcement is implemented
with ConfD, running the NETCONF server [14]
accepting an XML configuration based on the
NSF-Facing Interface YANG data model [11].
NSFs leverage an open source IDS/IPS software
called Suricata for network analysis and threat
detection. For intent analysis, NSFs employ a sub-
scription-based notification system for the Ana-
lyzer through NETCONF event notifications [15]
with ConfD. The Analyzer subscribes to moni-
toring data via the Monitoring Interface [6] with
multiple NSFs, utilizing a simple machine learning
technique (e.g., decision tree algorithm) for Intent
Assurance in the I2NSF Framework.

In this Proof of Concept (PoC), all compo-
nents of the I2NSF Framework play a role in
defending the protected network through contin-
uous intent analysis and intent adaptation. In this
scenario, normal clients are accessing a protect-
ed network that can cope with a DDoS attack.
Each component has distinct responsibilities for
mitigating the attack as follows. The I2NSF User
monitors the system and assists it if it is necessary
to handle attacks when alerts are received. The
Security Controller receives reconfigurations and
dispatches them to the NSFs, sometimes request-
ing additional NSFs from the DMS to aid in attack
mitigation. The DMS may receive requests to
deploy new NSFs. NSFs continue working to mit-
igate attacks based on reconfigurations and to
collect network information. Finally, the Analyzer
remains vigilant, observing the network to assess
changes in the threat.

Note that the implementation of the I2NSF sys-
tem has been proved through several IETF hack-
athon projects. This implementation involves the
final I2NSF YANG data models that are approved
as RFCs by the IETF. The source code and demon-
stration video clip of the implementation are avail-
able at https://github.com/jaehoonpauljeong/
I2NSF-Closed-Loop-Security-Control and https://
youtu.be/OWNJbF7wGgs, respectively.

Performance Evaluation
To evaluate our proof-of-concept implementa-
tion, we performed a simple simulation with var-
ious numbers of clients to acquire its impact on
the Mean Time to Detect (MTTD) and the Mean
Time to Respond (MTTR) as performance metrics.
MTTD is the average time it takes to discover a
potential security issue, while MTTR is the average
time it takes to completely eliminate the problem
after it has been discovered.

Figure 5 shows the MTTD and MTTR of both
ICSC and a manual operation. The MTTD and
MTTR of the manual operation increase expo-
nentially with the involvement of more clients. A
constant number as a common duration is used

to represent a baseline time that is required for
a human operator’s operations, independent of
the number of clients. This number includes fac-
tors such as the time it takes for a human opera-
tor to recognize a security threat, access relevant
information, and take appropriate actions. The
exponential increase is due to the higher work-
load and complexity of manually detecting and
obtaining the necessary information when more
clients are involved.

It is important to note that the MTTD and
MTTR values for the manual operation are derived
from a controlled Proof-of-Concept environment.
By conducting experiments in the controlled
environment, specific variables can be isolated
and systematically measured for their impact on
MTTD and MTTR. This controlled setting elim-
inates external variables that could otherwise
affect those MTTD and MTTR values, providing a
clear benchmark for evaluating the effectiveness
of the ICSC system.

On the other hand, as shown in Fig. 5, the
MTTD and MTTR of ICSC are not significantly
impacted by the number of clients. Furthermore,
ICSC enables faster detection and reaction time
compared to manual operation. Moreover, the
automatic adaptation of ICSC allows for continu-
ous surveillance of the network, regardless of the
availability of an operator.

Research Challenges
The idea of ICSC has been proposed herein with
a proof-of-concept implementation. ICSC needs
to be polished before it can be deployed in the
industry. The following research challenges must
be addressed to enhance its effectiveness:

Adaptive Policy Enforcement: It is import-
ant to ensure the effectiveness of security policy
enforcement in a dynamic and evolving network
environment. This includes addressing challenges
that are related to policy conflicts, policy updates,
and consistent enforcement across different NSFs.
The framework must ensure that the policies are
well-adapted with no conflict between any of them.

Real-time Threat Detection: Detecting threats
in a real-world network is a large-scale research
task that requires advanced techniques for real-
time threat detection and analysis to identify and
respond to emerging security threats. This involves
leveraging machine learning, anomaly detection,
and behavioral analysis to detect and mitigate both
known and unknown threats in real time.

FIGURE 5. The performance of ICSC vs. manual operation.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 24,2024 at 02:51:15 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • Accepted for Publication7

ICSC provides two IBN func-
tionalities: Intent Fulfilment
and Intent Assurance. ICSC

expands upon IBCS by adding
a data model mapper into

the security policy translator
to enable fully automated

and effective translation to
achieve Intent Fulfilment.
ICSC also provides Intent
Assurance by utilizing a

closed-loop security control
system to align the security

policies that have been
deployed with the desired
intent based on an anal-
ysis of numerous metrics

obtained from the monitoring
process.

Proactive Defense: The feedback delivered
to the Security Controller to prevent concurring
attacks must be developed with adaptability and
responsiveness in mind. This involves designing
feedback mechanisms that not only provide time-
ly and accurate information about ongoing attacks
but also dynamically adapt to the changing threat
landscape. This requires continuous refinement
of the feedback mechanisms to proactively stay
ahead of emerging threats.

Conclusion
ICSC provides two IBN functionalities: Intent Ful-
filment and Intent Assurance. ICSC expands upon
IBCS by adding a data model mapper into the secu-
rity policy translator to enable fully automated and
effective translation to achieve Intent Fulfilment.
ICSC also provides Intent Assurance by utilizing
a closed-loop security control system to align the
security policies that have been deployed with the
desired intent based on an analysis of numerous
metrics obtained from the monitoring process. As
future work, ICSC will be enhanced for real-world
network environments, including 5G core networks
and Open Radio Access Network (O-RAN).

Acknowledgments
This work was supported by the Institute of Infor-
mation & Communications Technology Planning
& Evaluation (IITP) grant funded by the Ministry
of Science and ICT (MSIT), South Korea (No.
RS-2022-II221199 and No. RS-2022-II221015).
The figures were designed using images obtained
from Flaticon.com.

References
[1] A. Clemm et al., “Intent-Based Networking — Concepts and

Definitions,” RFC 9315, Oct. 2022; available: https://www.
rfc-editor.org/info/rfc9315

[2] A. Leivadeas and M. Falkner, “A Survey on Intent-Based
Networking,” IEEE Commun. Surveys Tutorials, vol. 25, no. 1,
2023, pp. 625–55.

[3] D. Lopez et al., “Framework for Interface to Network Secu-
rity Functions,” RFC 8329, Feb. 2018; available: https://
rfc-editor.org/rfc/rfc8329.txt

[4] J. T. Kim et al., “IBCS: Intent-Based Cloud Services for Secu-
rity Applications,” IEEE Commun. Mag., vol. 58, no. 4, 2020,
pp. 45–51.

[5] C. Basile et al., “Adding Support for Automatic Enforcement

of Security Policies in NFV Networks,” IEEE/ACM Trans. Net-
working, vol. 27, no. 2, 2019, pp. 707–20.

[6] J. P. Jeong et al., “I2NSF NSF Monitoring Interface YANG
Data Model,” Internet Engineering Task Force, Internet-Draft
draft-ietf-i2nsf-nsf-monitoringdata-model-20, June 2022,
Work in Progress; available: https: //datatracker.ietf.org/
doc/draft-ietf-i2nsf-nsf-monitoring-data-model/20/

[7] P. Lingga, J. P. Jeong, and Y. Choi, “I2NSF Analytics Inter-
face YANG Data Model for Closed-Loop Security Control
in the I2NSF Framework,” Internet Engineering Task Force,
Internet-Draft draft-lingga-opsawg-analytics-interface-dm-00,
Aug. 2024, Work in Progress; available: https://datatracker.
ietf.org/doc/ draft-lingga-opsawg-analytics-interface-dm/00/

[8] J. P. Jeong et al., “I2NSF Consumer-Facing Interface YANG
Data Model,” Internet Engineering Task Force, Internet-Draft
draft-ietf-i2nsf-consumer-facing-interface-dm-31, May 2023,
Work in Progress; available: https://datatracker.ietf.org/
doc/ draft-ietf-i2nsf-consumer-facing-interface-dm/31/

[9] S. Hares et al., “I2NSF Capability YANG Data Model,”
Internet Engineering Task Force, Internet-Draft draft-ietf-i2n-
sf-capability-data-model-32, May 2022, Work in Progress;
available: https://datatracker.ietf.org/ doc/draft-ietf-i2nsf-ca-
pability-data-model/32/

[10] S. Hyun et al., “I2NSF Registration Interface YANG Data Model
for NSF Capability Registration,” Internet Engineering Task
Force, Internet-Draft draft-ietf-i2nsf-registration-interface-dm-26,
May 2023, Work in Progress; available: https://datatracker.ietf.
org/doc/draft-ietf-i2nsf-registration-interface-dm/26/

[11] J. T. Kim et al., “I2NSF Network Security Function-Facing
Interface YANG Data Model,” Internet Engineering Task
Force, Internet-Draft draft-ietf-i2nsf-nsf-facinginterface-dm-29,
June 2022, Work in Progress; available: https: //datatracker.
ietf.org/doc/draft-ietf-i2nsf-nsf-facing-interface-dm/29/

[12] P. Lingga et al., “SPT: Security Policy Translator for Network
Security Functions in Cloud-Based Security Services,” IEEE
Trans. Dependable and Secure Computing, 2024, pp. 1–14.

[13] A. Bierman, M. Björklund, and K. Watsen, “RESTCONF
Protocol,” RFC 8040, Jan. 2017; available: https://www.
rfc-editor.org/ info/rfc8040

[14] R. Enns et al., “Network Configuration Protocol (NET-
CONF),” RFC 6241, June 2011; available: https://www.
rfc-editor.org/info/rfc6241

[15] H. Trevino and S. Chisholm, “NETCONF Event Notifica-
tions,” RFC 5277, July 2008; available: https://www.rfc-edi-
tor.org/info/ rfc5277

Biographies
Patrick Lingga is a Ph.D. candidate in the Department of Elec-
trical and Computer Engineering at Sungkyunkwan University,
Republic of Korea.

Jaehoon (Paul) Jeong is a professor in the Department of
Computer Science and Engineering at Sungkyunkwan Universi-
ty, Republic of Korea.

Linda Dunbar is a distinguished engineer at Futurewei Technolo-
gies in the United States and the IETF I2NSF Working Group Chair.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 24,2024 at 02:51:15 UTC from IEEE Xplore. Restrictions apply.

