
CBSS: Cloud-Based Security System with Interface
to Network Security Functions

Jaehoon (Paul) Jeong
Department of Computer Science & Engineering

Sungkyunkwan University
Suwon, Republic of Korea
Email: pauljeong@skku.edu

Patrick Lingga
Department of Electrical & Computer Engineering

Sungkyunkwan University
Suwon, Republic of Korea

Email: patricklink@skku.edu

Abstract—This paper proposes a Cloud-Based Security System
(CBSS) with Interface to Network Security Functions (I2NSF) as
the framework and interfaces. It shows the feasibility of CBSS
for flexible and efficient security services in cloud-based network
environments such as 5G networks and Internet of Things
(IoT) networks. The design and implementation of CBSS are
explained along with information and data models of the I2NSF
standard interfaces. The architecture of the I2NSF framework
is augmented for Intent-Based Networking (IBN) for intelligent
security services. Through experiment, it is shown that CBSS can
handle various security attacks autonomously.

Index Terms—I2NSF, Interface, Network Security Function,
Cloud-Based Security System, Intent-Based Networking.

I. INTRODUCTION

Nowadays, cloud computing has been a dominant com-
puting platform in various domains such as Artificial Intel-
ligence (AI) services, Internet of Things (IoT), and electronic
commerce business systems. Especially, 5G cellular networks
are leveraging the cloud computing and Multi-access Edge
Computing (MEC) for their core networks and Radio Access
Networks (RAN) [1]. The various domains adopt Software-
Defined Networking (SDN) for supporting softwarized for-
warding fabric and Network Functions Virtualization (NFV)
for cloud computing and MEC [2]. For safe and secure
network services, the cloud computing and MEC systems need
to provide security services to various computers and devices
such as hosts, servers, smart devices (e.g., smartphone and
tablet), and IoT devices.

Many security vendors provide users with security solutions
running in the cloud systems. However, there is no standard
framework and interfaces for the multi-vendor security solu-
tions in a cloud environment. As a result, it is hard to control
and manage those solutions in a cloud system like a data center
network and a campus network in a unified and efficient way.
That is, each vendor needs its own interface to control and
monitor its security function, which works as either a Physical
Network Function (PNF) in a middle box or a Virtual Network
Function (VNF) in a cloud system.

For cloud-based security service systems with a unified
framework and standard interfaces to those security solu-
tions, Interface to Network Security Functions (I2NSF) was
proposed by I2NSF Working Group (WG) [3] in Internet

Engineering Task Force (IETF) in 2017. I2NSF can accommo-
date heterogeneous security solutions from multiple security
vendors as Network Security Functions (NSF) through the
standardized I2NSF framework and interfaces [2], [4]. The
I2NSF interfaces can be designed and implemented as a data-
driven security approach with the data modeling based on
YANG [5] and the remote control and management protocols
such as NETCONF [6] or RESTCONF [7]. Thus, with the
standardized framework and interfaces, those multi-vendor
solutions can work together as either PNFs or VNFs under the
control of a unified dashboard in a cloud computing system
or MEC system [8].

This paper proposes a Cloud-Based Security System
(CBSS) leveraging the I2NSF framework and interfaces for
intelligent cloud security services. It explains the design
and implementation of an I2NSF-based CBSS along with
the information and data models of the I2NSF interfaces.
Also, it explains the intelligent security system leveraging the
concept of Intent-Based Networking (IBN) [9] with security
policy translator and closed-loop security control in an I2NSF
system for CBSS. First, the security policy translator can
translate an intent of a network administrator (i.e., a high-
level security policy) into the corresponding low-level security
policy that can be configured into the NSFs for security
services. Second, the closed-loop security control can detect
a new security attack in a target network under the I2NSF
framework, generate a new security policy and apply the policy
to the I2NSF framework without any intervention of a network
administrator. Also, if it detects the overloading and hardware
problems of NSFs, the closed-loop security control can take
action on them autonomously. Thus, this security management
automation of CBSS may reduce the operational expenditure
for security service management in complex cloud systems.

The remainder of this paper is organized as follows. Sec-
tion II describes the motivation, architecture, and use case of
CBSS. Section III describes the I2NSF framework and inter-
faces. Section IV specifies the information and data models
of I2NSF interfaces. Section V articulates the security polity
translator and closed-loop security control as IBN features.
Section VI shows the performance of the I2NSF framework
for the defense against a security attack. Lastly, Section VII
concludes this paper along with future work.

2023 Fourteenth International Conference on Mobile Computing and Ubiquitous Networking (ICMU)

978-4-907626-52-5/23/$31.00 ©2023 IPSJ 143

���������	
���
��������������
�

�����

�����

������ ����� �����

�	
��
���

��������	������

��������	������

�	�
�����
���

���	���
	

����
��������	

�����
���	�����

��������	

�����
���	�����

�	�	���	����

 ����	!	���

����	!��� ��

�"
�#$�	�	��%��

�

�&�'$�	�	��%��

�

����(
�
�
	���������
�����!	�$��

������	���
	

�����

���$��

������	���
	

�����

�����

���������
���
�����������
	��������

���������	
���
�������

�!����

��
�)
��

�!������
���� �!����"�!	
���������	���

��
���� ���
����

��������

���

��	�
�������

������

���������
�

���������	���

�����
����

������

���

�����
����

�������

���	
��

���
	���

���	
��

�	�����

���	
��

��	����

��������������
���
�

��������	

��
����

�����	�

��
����

�������

��
����

�������� �������� ��������

�
����!"���

���

��

���
��������

��	�
����

��*�

�)!
�
�������

��������

Fig. 1. Cloud-Based Security System (CBSS)

Security Controller

(SC)

Developer's

Management

System (DMS)

I2NSF User

(IU)

NSF A NSF B
...

NSF C NSF D

Consumer-Facing Interface (CFI)

NSF-Facing Interface (NFI)

NSF: Network Security Function

(e.g., Firewall, Web Filter, Deep Packet Inspection, DDoS-Attack Mitigator, and Antivirus)

Video Client Video Server

Security Network

Security Management System

Security Client

Registration Interface

(RI)

I2NSF Framework for Cloud-Based Security System

Monitoring Interface (MI)

Fig. 2. Legacy Interface to Network Security Functions (I2NSF) Framework

II. CLOUD-BASED SECURITY SYSTEM (CBSS)

This section describes the Framework of Interface to Net-
work Security Functions (I2NSF). I2NSF is an IETF standard
technology for cloud-based security service systems. I2NSF
provides network users with a standard framework and stan-
dard interfaces for network security services. Fig. 1 shows a
Cloud-Based Security System (CBSS) using I2NSF for such
cloud-based security services. As shown in this paper, an
administrator can configure a security policy for a site (e.g.,
smart building, smart factory, and smart home) remotely for
the sake of the users in the site.

As a use case with Fig. 1, in a smart building, an employer
has a high-level security policy that his employees cannot ac-
cess Social Networking Service (SNS) websites like Facebook,
Instagram, and YouTube during work time (from 9am to 6pm).
To enforce this high-level security policy in the traffic in the

Security Controller

(SC)

Developer's

Management

System (DMS)

I2NSF User

(IU)

NSF A NSF B
...

NSF C NSF D

Consumer-Facing Interface (CFI)

NSF-Facing Interface (NFI)

Analytics Interface

(AI)

NSF: Network Security Function

(e.g., Firewall, Web Filter, Deep Packet Inspection, DDoS-Attack Mitigator, and Antivirus)

Video Client Video Server

Security Network

Security Management System

Security Client

Registration Interface

(RI)

I2NSF Analyzer

(IA)

I2NSF Framework for Cloud-Based Security System

Monitoring Interface (MI)

Fig. 3. Extended Interface to Network Security Functions (I2NSF) Framework

smart building, the employer asks his network administrator to
configure this security policy in Network Security Functions
(NSF) in a Cloud-Based Security System (CBSS) through
which the traffic in the smart building move. It is assumed
that the Internet traffic of computers and mobile devices
(e.g., smartphones and tablets) are steered to the Cloud-
Based Security System (called CBSS) for traffic regulation and
security services according to the company’s security policy.

The enforcement of a high-level security policy can be real-
ized in CBSS that is empowered with the I2NSF framework.
As shown in the right-hand side of Fig. 1, I2NSF Framework
is described in a logical view. A network administrator uses
a web-based dashboard called an I2NSF User (IU) to make a
high-level security policy. The I2NSF User delivers the high-
level security policy to Security Controller (SC) which is a
main control component in the I2NSF framework and handles

2023 Fourteenth International Conference on Mobile Computing and Ubiquitous Networking (ICMU)

144

security demands from I2NSF Users. The Security Controller
translates the high-level security policy into the corresponding
low-level security policy that can be understood by NSFs. The
Security Controller selects an appropriate NSF(s) among a
pool of NSFs to process the low-level security policy, and then
sends the policy to the selected NSF(s) as shown in the figure.
After receiving the low-level security policy, the corresponding
NSF(s) performs the requested security service for the sake of
the I2NSF User.

The I2NSF framework can be built in a cloud using Net-
work Functions Virtualization (NFV) along with Software-
Defined Networking (SDN), as shown in the right-hand side
of Fig. 1 [8]. NFV is the standard framework from European
Telecommunications Standards Institute (ETSI) The security
network having NSFs can be constructed by SDN.

III. I2NSF FRAMEWORK

This section explains the components and interfaces in the
I2NSF framework [4], [10]. Fig. 2 shows the legacy I2NSF
framework which has been completed by the IETF I2NSF
WG. But, for Intent-Based Networking (IBN) [9], as shown
in Fig. 3, an extended I2NSF framework is proposed by this
paper. Note that the extended I2NSF framework is mentioned
as the I2NSF framework in this paper. Table I shows the
description of components of the extended I2NSF framework.
This I2NSF framework has five components such as Security
Controller (SC), I2NSF User (IU), Developer’s Management
System (DMS), Network Security Function (NSF), and I2NSF
Analyzer (IA).

Table II shows the description of interfaces of the I2NSF
framework. This I2NSF framework has five interfaces such
as Registration Interface (RI) [11], Consumer-Facing Interface
(CFI) [12], NSF-Facing Interface (NFI) [13], Monitoring In-
terface (MI) [14], and Analytics Interface (AI) [15].

As shown in Figs. 2 and 3, the I2NSF framework consists of
three layers such as Security Network, Security Management
System, and Security Client. Security Network consists of
multiple NSFs and forwarding elements (e.g., switch and
router). It performs data forwarding through NSFs’ security
services in data networks (e.g., Internet and data center). Se-
curity Management consists of Security Controller (SC), mul-
tiple Developer’s Management Systems (DMS), and I2NSF
Analyzer (IA). It performs control and monitoring functions
for security services for network traffic passing through the
Security Network. Security Client is I2NSF User which makes
a high-level security policy based on a network administrator’s
security demands.

In the legacy I2NSF framework in Fig. 2, Security Con-
troller collects NSF monitoring data from NSFs as an NSF
data collector via Monitoring Interface and can analyze the
data [14]. On the other hand, our extended I2NSF framework
in Fig. 3, I2NSF Analyzer collects NSF monitoring data from
NSFs as an NSF data collector via Monitoring Interface and
analyzes the data for the sake of Security Controller. This
separation of Security Controller and I2NSF Analyzer can

TABLE I
DESCRIPTION OF COMPONENTS IN I2NSF FRAMEWORK

Component Description

Security Controller (SC)
An orchestrator to govern the I2NSF system
by translating a security service demand into
a configurable, low-level security policy.

I2NSF User (IU)
A dashboard to construct a high-level secu-
rity policy and deliver it to Security Con-
troller.

Developer’s
Management System
(DMS)

A vendor management system to provide an
NSF and register its capability with Security
Controller.
A security service function to process

Network Security security requirements as either a Virtual
Function (NSF) Network Function (VNF) or a Physical

Network Function (PNF).

I2NSF Analyzer (IA)
A data analyzer to analyze monitoring data
from NSFs for the detection of security
attacks and NSF diagnosis.

TABLE II
DESCRIPTION OF INTERFACES IN I2NSF FRAMEWORK

Interface Description
Registration Interface
(RI)

An interface used by DMS to register an
NSF’s capability with SC.

Consumer-Facing Inter-
face (CFI)

An interface used by IC to deliver a high-
level security policy to SC.

NSF-Facing Interface
(NFI)

An interface used by SC to deliver a low-
level security policy to an NSF.

Monitoring Interface
(MI)

An interface used by NSFs to deliver NSF
monitoring data to IA.

Analytics Interface (AI) An interface used by IA to delivery a recon-
figured policy or feedback report to SC.

release the workload of Security Controller as an NSF data
analytics function.

IV. I2NSF INFORMATION AND DATA MODELS

This section explains the information models and YANG
data models of NSF capability and I2NSF interfaces in the
I2NSF framework. YANG [5] is a data modeling language
used to model configuration and state data, which are manip-
ulated by the Network Configuration Protocol (NETCONF) [6]
or the RESTCONF Protocol [7].

We define an information model and a data model as
follows.

• Information Model: A representation of concepts of
interest to an environment in a form that is independent of
data repository, data definition language, query language,
implementation language, and protocol [16].

• Data Model: A representation of concepts of interest
to an environment in a form that is dependent on data
repository, data definition language, query language, im-
plementation language, and protocol [16].

Fig. 4 shows the registration of an NSF’s capability with
Security Controller in the I2NSF framework. DMS registers
the capability of a new NSF with Security Controller along
with the NSF’s access information (e.g., IP address and port
number) via Registration Interface [11]. The NSF’s capability
includes the functions of firewall (denoted as FW) and web

2023 Fourteenth International Conference on Mobile Computing and Ubiquitous Networking (ICMU)

145

Security Controller

(SC)

Developer's

Management

System (DMS)

I2NSF User

(IU)

NSF A NSF B
...

NSF C NSF D

Consumer-Facing Interface (CFI)

Registration Interface

(RI)

NSF-Facing Interface (NFI)

<New NSF>

Cap = {FW, WF}

E = {}

C = {IPv4, IPv6}

A = {Allow, Deny}

<NSF A>

Cap = {FW, WF}

E = {}

C = {IPv4}

A = {Allow, Deny}

<NSF B>

Cap = {FW, WF}

E = {user}

C = {IPv6}

A = {Allow, Deny}

<NSF C>

Cap = {FW, WF}

E = {dev}

C = {IPv4, IPv6}

A = {Allow, Deny}

<NSF D>

Cap = {FW, WF}

E = {}

C = {IPv4, time}

A = {Allow, Deny}

Developer's Management System 1 (DMS 1) Developer's Management System 2 (DMS 2)

Fig. 4. Registration of an NSF’s Capability with Security Controller

filter (denoted as WF) in Fig. 4. This NSF supports an Event-
Condition-Action (ECA) policy where ‘E’, ‘C’, and ‘A’ stand
for “Event”, “Condition”, and “Action”, respectively. “E =
{}” means that the event boolean is always evaluated as true.
“C = {IPv4, IPv6}” means that the condition handles either
IPv4 datagrams or IPv6 datagrams. “A = {Allow,Deny}”
means that the action allows or denies a packet according to
the condition. As shown in Fig. 4, the capability information
of four NSFs (i.e., NSF A, NSF B, NSF C, and NSF D) is
shown in the figure, and this information is registered with
Security Controller for security services demanded by I2NSF
User via Consumer-Facing Interface.

A. Information and Data Models of Registration Interface

The information and data models of Registration Interface
(RI) aims at supporting NSF capability registration and query
via I2NSF RI [11]. Note that the I2NSF framework in this
paper uses NETCONF [6] to deliver an XML file for either
NSF capability registration or query via I2NSF RI.

Fig. 5 shows the information models of I2NSF interfaces
such as Registration Interface (RI), Consumer-Facing Interface
(CFI), and NSF-Facing Interface (NFI). In the information
model of RI in Fig. 5(a), an NSF may have multiple capabili-
ties such as event capabilities, condition capabilities, action ca-
pabilities, resolution-strategy-capabilities, and default-action-
capabilities. Fig. 6 shows a YANG tree of NSF Capability that
corresponds to the information model of the NSF capability of
RI in Fig. 5(a) [17]. A YANG tree shows the visual representa-
tion of a YANG data model. In this figure, the name of the NSF
capability module is ietf-i2nsf-capability. The root node of this
module is nsf as a container which is a data node in YANG.
This nsf node has nsf-name (i.e., the NSF’s name), directional-
capabilities, event-capabilities, condition-capabilities, action-
capabilities, and resolution-strategy-capabilities.

Event capabilities specify the capabilities that describe an
event to trigger the evaluation of the condition clause of an
I2NSF policy rule [17]. An event may be either a system event
or a system alarm [14]. The system event is an event to related
to the operations of an NSF, such as access violation, config-
uration change, session table event, and traffic flows [14]. The

���

�����	���

�	���

�
����	����

�	��	
��

�
����	�

�	���

����

��������	�
�

��
�	

�
�
�������

�����
�����

����

���

!��"#��

��!�"����

#�$����	
����

%���"%����

���	
����

�	��%����

�	������

���

����
��

���
��

$��

���	
&

��
�	

���	
&�

���&

��'�"��'��

(a) Registration Interface

������ ��	
�

��
�	�

��	
�

��
�	�

�����

��

������	�	��

���	������

����

���	����

�
�������

�������

�
����
��

�����

� �	��

��	�	
���

!
	�������

�	���	������

�������
�

�����

���	

"�
�����

�����

#�����

� �	��

�		�

�������

"�
�	
�
��$

!�������	

�����

!��

"��	$���

����	

"�
�	%�

� �	����		�

(b) Consumer-Facing Interface

��������	

�����

����

������

����

������	

�����

�������

�����

���

�������

�������

�
����
��

��
���

���
����

��
���
��

�!�

��������

!���������	

��������

!���	"���#

$����	

 ���%���

����	

 ���%���

�������	

 ���%���

!����

���������

������

&����

����

��������

"���#	'���

!���	'���

����	&����

�����	(

(c) NSF-Facing Interface

Fig. 5. Information Models of I2NSF Interfaces

system alarm is an event to related to computer hardware’s
exceeding usage and problem, which draws an attention to
make the I2NSF system work properly [14]. As system alarms,
there are memory alarm, CPU alarm, disk (storage) alarm, and
hardware alarm.

Condition capabilities specify the capabilities of a set of
attributes, features, and values to be compared with a set of
known attributes, features, and values in order to determine
whether a set of actions needs to be executed or not. As

2023 Fourteenth International Conference on Mobile Computing and Ubiquitous Networking (ICMU)

146

Fig. 6. YANG Tree of NSF Capability

conditions, there are matching attributes of a packet or flow,
and comparing the internal state of an NSF with a desired
state.

Action capabilities specify the capabilities that describe the
control and monitoring aspects of traffic flow-based NSFs
when the event and condition clauses are satisfied. As actions,
providing intrusion detection or prevention, web filtering (i.e.,
URL filtering), flow filtering, and deep packet inspection for
packets or flows.

Resolution strategy capabilities specify the capabilities that
describe conflicts occurring between the actions of the similar
or different policy rules that are matched and contained in
this NSF. Default action capabilities specify the capabilities
that describe how to execute I2NSF policy rules when no rule
matches a packet. They include the following actions such as
pass, drop, reject, rate-limit, and mirror.

B. Information and Data Models of Consumer-Facing Inter-
face

The information and data models of Consumer-Facing In-
terface (CFI) aims at supporting the construction of a high-
level security policy and the delivery of such a policy via
I2NSF CFI [12]. Note that the I2NSF framework in this paper
uses RESTCONF [7] to deliver an XML file for a high-level
security policy via I2NSF CFI.

The YANG data model of CFI defines various types of
managed objects and the relationship among them that is need
to build the flow policies from I2NSF Users’ perspectives.

This YANG data model is based on an “Event-Condition-
Action” (ECA) policy defined by the I2NSF Capability YANG
data model [17]. It allows different I2NSF Users in an I2NSF
system to define, manage, and monitor flow policies with an
administrative domain (e.g., user group and device group).

In the information model of CFI in Fig. 5(b), a policy
may have multiple rules, and each rule consists of event,
condition, and action as an ECA policy rule. The YANG data
model of CFI defines endpoint groups such user group, device
group, location group, URL group, and voice group. It defines
threat prevention such threat feed and payload content for deep
packet inspection of packets.

C. Information and Data Models of NSF-Facing Interface

The information and data models of NFS-Facing Interface
(NFI) aims at supporting the construction of a low-level
security policy and the delivery of such a policy via I2NSF
NFI [13]. Note that the I2NSF framework in this paper uses
NETCONF [6] to deliver an XML file for a low-level security
policy via I2NSF NFI.

The YANG data model of NFI defines an interface between
a Security Controller and NSFs in an I2NSF system. It is based
on the I2NSF Capability YANG data model [17] as a basis
YANG data model for the other I2NSF YANG data models.

In the information model of NFI in Fig. 5(c), a policy may
have multiple rules, and each rule consists of event, condition,
and action as an ECA policy rule like a policy in CFI. For
condition, the YANG data model of CFI can specify more
details of the condition of a packet in terms of layer-2 header
(e.g., Ethernet frame header), layer-3 header (e.g., IPv4/IPv6
datagram header), layer-4 header (e.g., TCP segment header
and UDP datagram header), and packet payload (e.g., payload
and context).

V. INTENT-BASED NETWORKING IN I2NSF

This section explains intelligent security services through
Intent-Based Networking (IBN) based on I2NSF. The fol-
lowing terms are defined in RFC 9315 about “Intent-Based
Networking - Concepts and Definitions” [9]:

• Intent: A set of operational goals (that a network should
meet), and outcomes (that a network is supposed to de-
liver) defined in a declarative manner without specifying
how to achieve or implement them.

• Intent-Based Networking (IBN): A network that can be
managed using intent.

• Intent-Based Management: The concept of performing
management based on the concept of intent.

This paper proposes an Intent-Based Management for
Cloud-Based Security System. In this paper, a high-level
security policy corresponds to an intent as a declarative
configuration. On the other hand, a low-level security policy
corresponds to an imperative configuration. For IBN-based
security services, two functions are provided as follows. First,
an automatic translation from a high-level security policy to
the corresponding low-level security policy is needed. Second,

2023 Fourteenth International Conference on Mobile Computing and Ubiquitous Networking (ICMU)

147

Data Extractor

NSF Database

I2NSF User

Data Model

Mapper

Data Converter

Policy Generator

High-level Policy XML File over CFI

Target NSF A Target NSF B

Low-level Policy XML File(s) over NFI

Extracted Data from

High-level Policy

Converted Data for

Low-level Policy

Low-level Policy

XML File(s) for Target NSF(s)

Mapping Model

Security Controller

Security Policy Translator

Fig. 7. Security Policy Translator (SPT) Architecture

a closed-loop security control is needed for security manage-
ment automation in the I2NSF system. These two functions
are explained in the following subsections.

A. Security Policy Translator

This subsection explains a Security Policy Translator (SPT)
that translates a high-level security policy into a low-level
security policy in the I2NSF system. Fig. 7 shows the ar-
chitecture of SPT which is a part of Security Controller.
SPT consists of Data Model Mapper, NSF Database, Data
Extractor, Data Converter, and Policy Generator. Table III
describes the components in the SPT. As shown in Fig. 7,
I2NSF User sends Security Controller a High-level Policy
XML File over CFI. SPT in Security Controller translates this
XML file into the corresponding Low-level Policy XML Files
and sends them to appropriate NSFs over NFI.

Fig. 8 shows an example of Security Policy Translation for
time-based firewall (FW) and web filter (WF) services in the
I2NSF framework. A high-level security policy is that the
employees in a company cannot access SNS websites (e.g.,
facebook and instagram) during working time (i.e., 9am to
6pm). During the translation, the high-level, abstract data like
Employee and SNS Sites are converted to the corresponding
low-level, concrete data like IPv4 address range (e.g., 10.0.0.2
to 10.0.0.10) and SNS URLs (e.g., facebook.com and insta-
gram.com).

B. Closed-Loop Security Control

This subsection explains a closed-loop security Control
for IBN-based security management automation in an I2NSF
system. This closed-loop control can handle two kinds of
work such as security policy reconfiguration for new security
attacks and feedback report for handling system issues of an

TABLE III
DESCRIPTION OF COMPONENTS IN SECURITY POLICY TRANSLATOR

Component Description

Data Model Mapper
A component to make a mapping model
mapping the elements (i.e., variables) of
CFI YANG module into the corresponding
elements of NFI YANG module.

NSF Database
A database which stores data model map-
ping information and the capabilities of
NSFs. The mapping can convert an abstract
subject or object into the corresponding
concrete subject or object (e.g., IP address
and website URL).

Data Extractor
A component to extract high-level data from
the given high-level policy XML file de-
livered via CFI as a Deterministic Finite
Automaton (DFA).

Data Converter
A component to convert high-level data in
CFI to the corresponding low-level data in
NFI. It searches for appropriate NSFs with
such low-level data as policy provisioning.

Policy Generator
A component to generate a low-level policy
XML file with the low-level data through
PyangBind [18] having the YANG tree in-
formation for NFI.

��������	

������������	�

�����
	��
��
�

�	������
�
���	� �����������

������������	�	

•
����
������������������������

• ��������������
�		�������� ��!

���	�������	���������	�	

• ���������!"�	�

• ������	�������������
�

• ������#�!�–�$"!

• ����������	"

����������������� �������	�	

• ����������������������������

• ������	���������
�		�������� ��!

• ������#�!�–�$"!

• ����������	"

�	��

�������
���	
 ❶�

❷�

❹

❸

�������� !	�����"�����	���#�!"$

��! !	�����"�����	���#�!"$�

�	�������!��

#!%$

�	�������!�&

#%!$

������������
��	�	'����
��	�	

• ��!�(��%��&����������	"��'	

• ��!�)��%��$����������	"��'	

• ��!�*��()'����������	"��'	

❷�

❸

�	��

������
����
�������

Fig. 8. Example of Security Policy Translation

NSF. First, since a malicious activity by a new security attack
can be detected by an NSF or I2NSF Analyzer, this attack
needs to be reported to and blocked by the I2NSF system
in an automatic, prompt manner. Second, since the hardware
overload or malfunction of an NSF is detected by an I2NSF
Analyzer, this problem need to be reported to and handled by
the I2NSF system in an efficient way.

Fig. 9 shows the closed-loop security control in the I2NSF
framework. This closed-loop security control procedure con-
sists of five steps:

1) Delivery of NSF Monitoring Data: NSFs deliver their
monitoring data to I2NSF Analyzer (IA) via MI.

2) Machine Learning: IA analyzes the monitoring data for
security attack detection and NSF diagnosis.

3) Delivery of Reconfigured Policy or Feedback Report:
IA delivers a message (e.g., a reconfigured policy or
feedback report) to Security Controller (SC).

4) Policy Translation: SC performs policy translation to

2023 Fourteenth International Conference on Mobile Computing and Ubiquitous Networking (ICMU)

148

Security Controller

(SC)

I2NSF User

(IU)

NSF A NSF B
...

NSF C NSF D

2. Machine Learning:

Monitoring Data

Analysis

I2NSF Analyzer

(IA)

1. NSF Monitoring Data (MI)

3. Reconfigured Policy/

Feedback Report (AI)

5. Reconfigured Policy (NFI)

4. Policy Translation:

Policy/Feedback Analysis

Developer's

Management

System (DMS)

5'. Query (RI)

5'. Report (CFI)

Closed-loop Control

Fig. 9. Closed-Loop Security Control in I2NSF Framework

Client

Hacker

Server

Security Controller
(SC)

I2NSF User
(IU)

Developer’s
Management

System (DMS)

I2NSF Analyzer
(IA)

NSF A NSF B

Consumer-Facing
Interface

Analytics
Interface

Monitoring Interface

NSF-Facing
Interface

Registration
Interface

Malicious
Packets

Normal
Packets

Normal
Packets

Normal
Packets

Malicious
Packets
Denied

Fig. 10. Experiment Network Topology for I2NSF Framework

analyze the received policy or report and takes appro-
priate action.

5) Delivery of Query or Report: According to the types
of the message from IA, SC may send a Query to DMS
via RI or send a Report to IU via CFI.

Therefore, CBSS can provide network users with intelligent
security services with the intent translation and closed-loop
control for self-adaption based on machine learning.

VI. PERFORMANCE EVALUATION

This section explains the performance of our I2NSF system
against a hacker’s security attack such as a Denial-of-Service
(DoS) attack. First, it describes the experiment network topol-
ogy for performance evaluation and also the open source
software for the implemented I2NSF system. Second, it shows
the adaptability of a DoS attack in terms of the security
detection time according to the number of client hosts in the
experiment network.

Fig. 10 illustrates the topology of the experiment. The
experiment consists of the following main components:

• Server: The central component of the experiment, host-
ing valuable information and services.

• Hacker: An experienced individual attempting to breach
the server’s defenses using various hacking techniques.

• Client: An average client as a user attempting to access
the server legitimately.

• I2NSF Framework: The main framework used to con-
figure and monitor incoming and outgoing network traffic
through NSFs, acting as a barrier between the server and
the external network.

TABLE IV
DESCRIPTION OF OPEN SOURCE IN I2NSF FRAMEWORK

Open Source Version Role
Node.js [19] 14.17.3 Back-end JavaScript runtime

environment.
React [20] 18.2.0 Main library to build interac-

tive user interfaces and web
applications.

Python [21] 3.9 The main programming lan-
guage.

MongoDB [22] 7.0 The database to hold informa-
tion for the I2NSF framework.

ConfD [23] 8.0.8 Management agent software
framework for network el-
ements enabling NETCONF
and YANG.

pyang [24] 2.5.3 YANG validator, transforma-
tor, and code generator.

PyangBind [18] 0.8.4 Plugin for Pyang that gener-
ates a Python class hierarchy
from a YANG data model.

Table IV shows the description of open source used in
the I2NSF framework. The experiment utilizes the Consumer-
Facing Interface YANG data model to deliver the I2NSF
User’s intent (i.e., a high-level security policy) via REST-
CONF in conjunction with a Node.js server environment and
the React library to create a user-friendly graphical interface.
Within the Security Controller, intent translation (i.e., the
translation from a high-level security policy into the corre-
sponding low-level security policy) is executed using Python
and MongoDB. The translation output is then enforced through
ConfD to use the NSF-Facing Interface YANG data model,
which operates the NETCONF server. Additionally, the NSFs
feature a subscription-based notification system for I2NSF
Analyzer, facilitated by NETCONF event notifications through
ConfD. The I2NSF Analyzer subscribes to specific monitoring
information from multiple NSFs via Monitoring Interfaces for
intent analysis. The I2NSF Analyzer uses a straightforward
machine learning technique, such as a decision tree algorithm,
and delivers the analytics result to Security Controller via the
Analytics Interface that is implemented with NETCONF.

The experiment involves a series of controlled attempts by
a hacker’s host and a normal client’s host to access the server
protected by NSFs controlled by the I2NSF framework. Each
attempt is monitored and analyzed to evaluate the effectiveness
of the protection provided by the I2NSF framework. The
hacker attempts a DoS attack on the server, while the normal
client accesses the server through authorized channels.

Fig. 11 demonstrates the I2NSF framework’s adaptability
for our Cloud-Based Security System based on I2NSF. Adapt-
ability refers to the I2NSF framework’s capacity to adjust and
react to emerging threats. It assesses how swiftly the I2NSF
framework can modify its threat detection and protective
mechanisms in response to evolving cybersecurity threats. As
shown in Fig. 11, the time required for adaptation to a threat
like a DoS attack rises with the involvement of more clients.
This is due to the increasing complexity of gathering necessary
information among a larger client base. However, the impact

2023 Fourteenth International Conference on Mobile Computing and Ubiquitous Networking (ICMU)

149

5 10 15 20 25
	��������������������

0

10

20

30

40

50

60

�
��
��
���

��
��

�
���

��
	�
�
��
��
��
��

�
� �

��
������

Fig. 11. Detection and Reaction Time of a DoS Attack according to the
Number of Clients for Adaptability

on time is not significantly affected by the number of clients.
As a result, the I2NSF framework accommodates diverse

types of threats. Whether those threats are a malware outbreak,
DoS attack, Distributed Denial-of-Service (DDoS) attack, or
novel intrusion technique, the I2NSF framework can adjust
its defense against them in a prompt manner. Therefore, this
self-defense in the I2NSF framework provides users with a
confidence of security in even an environment where the nature
of cyber-threats is not only vast but also highly unpredictable.

Note that the I2NSF framework is an open-source project
in GitHub (https://github.com/jaehoonpaul/i2nsf-framework),
and its demonstration video clip is available in YouTube
(https://www.youtube.com/watch?v=ujlicemNo7E).

VII. CONCLUSION

This paper explains a Cloud-Based Security System (CBSS)
with Interface to Network Security Functions (I2NSF). CBSS
can be deployed in cloud computing environments such as
5G and IoT networks for intelligent security services. CBSS
can be empowered for intent-based security management au-
tomation by the features of Intent-Based Networking (IBN),
such as security policy translation and closed-loop security
control. In this paper, the I2NSF framework and its interfaces
are explained to realize the CBSS in the various networks
along with the IBN features. Especially, the information and
data models of the I2NSF interfaces are explained. As future
work, to fully support IBN, security policy validation and
optimization in CBSS will be implemented.

ACKNOWLEDGMENTS

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Ko-
rea government, Ministry of Science and ICT (MSIT)(No.
2023R1A2C2002990), and by the Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the the Korea MSIT (No. 2022-0-01015).

REFERENCES

[1] “Multi-access Edge Computing (MEC),” Oct. 2023. [Online]. Available:
https://www.etsi.org/technologies/multi-access-edge-computing

[2] S. Hares, D. Lopez, M. Zarny, C. Jacquenet, R. Kumar, and J. P.
Jeong, “Interface to Network Security Functions (I2NSF): Problem
Statement and Use Cases,” RFC 8192, Jul. 2017. [Online]. Available:
https://datatracker.ietf.org/doc/rfc8192/

[3] “I2NSF Working Group,” Oct. 2023. [Online]. Available:
https://datatracker.ietf.org/wg/i2nsf/about/

[4] D. Lopez, E. Lopez, L. Dunbar, J. Strassner, and R. Kumar, “Framework
for Interface to Network Security Functions,” RFC 8329, Feb. 2018.
[Online]. Available: https://datatracker.ietf.org/doc/rfc8329/

[5] M. Bjorklund, “The YANG 1.1 Data Modeling Language,” RFC 7950,
Aug. 2016. [Online]. Available: https://datatracker.ietf.org/doc/rfc7950/

[6] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
Configuration Protocol (NETCONF),” RFC 6241, Jun. 2011. [Online].
Available: https://datatracker.ietf.org/doc/rfc6241/

[7] A. Bierman, M. Bjorklund, and K. Watsen, “RESTCONF
Protocol,” RFC 8040, Jan. 2017. [Online]. Available:
https://datatracker.ietf.org/doc/rfc8040/

[8] J. P. Jeong, S. Hyun, T.-J. Ahn, S. Hares, and D. Lopez, “Applicability
of Interfaces to Network Security Functions to Network-Based
Security Services,” draft-ietf-i2nsf-applicability-18, Sep. 2019. [Online].
Available: https://datatracker.ietf.org/doc/draft-ietf-i2nsf-applicability/

[9] A. Clemm, L. Ciavaglia, L. Z. Granville, and J. Tantsura, “Intent-Based
Networking - Concepts and Definitions,” RFC 9315, Oct. 2022.
[Online]. Available: https://datatracker.ietf.org/doc/rfc9315/

[10] J. P. Jeong, P. Lingga, P. Jung-Soo, D. Lopez, and S. Hares, “Security
Management Automation of Cloud-Based Security Services in I2NSF
Framework,” draft-jeong-i2nsf-security-management-automation-06,
Jul. 2023. [Online]. Available: https://datatracker.ietf.org/doc/draft-
jeong-i2nsf-security-management-automation/

[11] S. Hyun, J. P. Jeong, T. Roh, S. Wi, and P. Jung-Soo,
“I2NSF Registration Interface YANG Data Model for NSF
Capability Registration,” draft-ietf-i2nsf-registration-interface-dm-26,
May 2023. [Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-
i2nsf-registration-interface-dm/

[12] J. P. Jeong, C. Chung, T.-J. Ahn, R. Kumar, and
S. Hares, “I2NSF Consumer-Facing Interface YANG Data
Model,” draft-ietf-i2nsf-consumer-facing-interface-dm-31, May 2023.
[Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-i2nsf-
consumer-facing-interface-dm/

[13] J. T. Kim, J. P. Jeong, P. Jung-Soo, S. Hares, and Q. Lin, “I2NSF
Network Security Function-Facing Interface YANG Data Model,” draft-
ietf-i2nsf-nsf-facing-interface-dm-29, Jun. 2022. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-i2nsf-nsf-facing-interface-dm/

[14] J. P. Jeong, P. Lingga, S. Hares, L. Xia, and H. Birkholz,
“I2NSF NSF Monitoring Interface YANG Data Model,”
draft-ietf-i2nsf-nsf-monitoring-data-model-20, Jun. 2022. [Online].
Available: https://datatracker.ietf.org/doc/draft-ietf-i2nsf-nsf-monitoring-
data-model/

[15] P. Lingga, J. P. Jeong, and Y. Choi, “I2NSF Analytics Interface
YANG Data Model,” draft-lingga-i2nsf-analytics-interface-dm-02, Jul.
2023. [Online]. Available: https://datatracker.ietf.org/doc/draft-lingga-
i2nsf-analytics-interface-dm/

[16] J. Strassner, J. M. Halpern, and S. van der Meer, “Generic Policy
Information Model for Simplified Use of Policy Abstractions (SUPA),”
draft-yang-i2nsf-security-policy-translation-15, May 2017. [Online].
Available: https://datatracker.ietf.org/doc/draft-ietf-supa-generic-policy-
info-model/

[17] S. Hares, J. P. Jeong, J. T. Kim, R. Moskowitz, and Q. Lin, “I2NSF
Capability YANG Data Model,” draft-ietf-i2nsf-capability-data-model-
32, May 2022. [Online]. Available: https://datatracker.ietf.org/doc/draft-
ietf-i2nsf-capability-data-model/

[18] R. Shakir, “PyangBind,” Oct. 2023. [Online]. Available:
https://github.com/robshakir/pyangbind

[19] OpenJS Foundation, “Nodejs,” Oct. 2023. [Online]. Available:
https://nodejs.org/en

[20] Meta Open Source, “React,” Oct. 2023. [Online]. Available:
https://react.dev/

[21] Python Software Foundation, “Python,” Oct. 2023. [Online]. Available:
https://www.python.org/

[22] MongoDB, Inc., “Mongodb,” Oct. 2023. [Online]. Available:
https://www.mongodb.com/

[23] Tail-f, “ConfD,” Oct. 2023. [Online]. Available: https://www.tail-
f.com/confd-basic/

[24] M. Bjorklund, “pyang,” Oct. 2023. [Online]. Available:
https://github.com/mbj4668/pyang

2023 Fourteenth International Conference on Mobile Computing and Ubiquitous Networking (ICMU)

150

