
Automatic Data Model Mapper for Security Policy
Translation in Interface to Network Security

Functions Framework
Patrick Lingga∗, Jeonghyeon Kim†, Jorge David Iranzo Bartolome∗, and Jaehoon (Paul) Jeong†

∗ Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
† Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea

Email: {patricklink, jeonghyeon12, jorgedavid, pauljeong}@skku.edu

Abstract—The Interface to Network Security Functions
(I2NSF) Working Group in Internet Engineering Task Force
(IETF) provides data models of interfaces to easily configure
Network Security Functions (NSF). The Working Group presents
a high-level data model and a low-level data model for configuring
the NSFs. The high-level data model is used for the users to
manipulate the NSFs configuration easily without any security
expertise. But the NSFs cannot be configured using the high-level
data model as it needs a low-level data model to properly deploy
their security operation. For that reason, the I2NSF Framework
needs a security policy translator to translate the high-level data
model into the corresponding low-level data model. This paper
improves the previously proposed Security Policy Translator by
adding an Automatic Data Model Mapper. The proposed mapper
focuses on the mapping between the elements in the high-level
data model and the elements in low-level data model to automate
the translation without the need for a security administrator to
create a mapping table.

Index Terms—Network Security, Policy Translation, Data
Model Mapper, Automatic Mapper, I2NSF

I. INTRODUCTION

The advent of the 5G network era has resulted in a lim-
ited operation of hardware-oriented networks and encouraged
many researchers to conduct studies on software-oriented
open networking technology. This research over software-
oriented open networking technologies resulted in some tech-
nologies, such as SDN (Software-Defined Networking) and
NFV (Network Functions Virtualization), which allowed the
virtualization of network resources and services for the appli-
cation of artificial intelligence to provide services dynamically
depending on the condition of the network. However, with
increasingly diverse and sophisticated networks, the likelihood
of networking attacks targeting them is also increasing, and
security administrators end up using a mix of several security
solutions in order to mitigate attacks.

To manage and control various mixed security solutions
and apply new security policies that change according to the
situation, it is necessary to understand the network security
functions (NSFs) developed by various manufacturers and en-
vironments, and to integrate them in order to manage security
functions in an effective way. However, the distinctions of
manufacturers and particularities of the environments make
this task to be quite complex, which, in the end, results in less
than optimal security systems due to integration problems.

In order to improve this, the Internet Engineering Task
Force (IETF) Interface to Network Security Functions (I2NSF)
Working Group (WG) established standard interfaces and
standard YANG data models for the NSFs. The IETF I2NSF
WG published RFC 8329 [1] to introduce the components
and interfaces in I2NSF Framework as shown in Fig. 1. The
components are:

• I2NSF User: The user of I2NSF Framework to control
and manipulate the configuration of NSF. The user creates
a high-level security policy and deliver it to the Security
Controller.

• Security Controller: The instance that control the NSFs
with the policy received from the I2NSF user. It translates
the high-level security policy into the low-level security
policy.

• Developer’s Management System (DMS): The provider
of the NSFs. It registers the capability of an NSF to the
Security Controller

• Network Security Function: The network function that
provides security services for the network.

The interfaces provided for the communication between
I2NSF components are:

• Consumer-Facing Interface: The interface to deliver
the user’s high-level security policy to the Security Con-
troller.

• Registration Interface: The interface to register an NSF
with its capability from the DMS to the Security Con-
troler.

• NSF-Facing Interface: The interface to deliver the
translated low-level security policy from the Security
Controller to the corresponding NSF.

The NSFs used in I2NSF aims to be freely used by users
without any security expertise. To do this, I2NSF needs
a security policy translator to translate a user’s high-level
policy into a low-level policy. However, even if only a minor
translation mistake occurs when converting such a user’s high-
level policy into a low-level policy, a big security problem can
threaten the entire network.

Intent Based Networking (IBN) emerged for solving that
problem [2]. The main goal of IBN is to set a network and
its security policies in an automatic way. This can minimize

882978-1-6654-2383-0/21/$31.00 ©2021 IEEE ICTC 2021

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

fo
rm

at
io

n
an

d
Co

m
m

un
ic

at
io

n
Te

ch
no

lo
gy

 C
on

ve
rg

en
ce

 (I
CT

C)
 |

 9
78

-1
-6

65
4-

23
83

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

TC
52

51
0.

20
21

.9
62

09
79

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 18,2022 at 04:52:06 UTC from IEEE Xplore. Restrictions apply.

��������������������

������
��������

���������������

��������������������������

������������
���

	������������������������

����� ����� ����� �����

��
��������
������	���
����	��

�������
	������������
	��������������
����������	���������

���
��

	�����

���������

����������

����������

���������’��

�
�
�������

������

�������������

���������

Fig. 1. I2NSF Framework

errors, especially human mistakes which can arise naturally by
having human administrators manage the network manually.
In addition, time and cost incurred by human administration
might also be improved through automatic network manage-
ment.

For accomplishing that, IBN automatically analyzes the
intent in the user’s high-level language, compensates for errors,
and converts it into a low-level security policy, even if the
network administrator does not describe all of the policies or
services requirements that the network administrator wants to
apply. However, in spite of the automation of the rest of the
process, the conversion of the models into low-level policies
is still performed manually by the security administrator. This
manual method can cause damage due to a human error, and it
acts as a bottleneck for the otherwise totally automated system,
making it difficult to quickly cope with network environments
that change in real time.

Therefore, we propose a policy mapping based on tree
edit distance that is different from the existing mapping
methods. In other words, a Data Model Mapper is proposed
to automatically convert a high-level YANG data model to a
low-level YANG data model. The contribution of this paper is
as follows:

• The improvement of the Security Policy Translator:
Automatic Data Model Mapper is used to automate the
mapping between the high-level data model and the low-
level data model.

• Comparison of string matching algorithms: This paper
evaluates three string matching algorithms to find the best
solution for our Automatic Data Model Mapper.

The remainder of this paper is composed as follows. Section
II summarizes the related work of policy translation. Section
III shows the architecture and implementation of our proposed
solution. In Section IV, the performance evaluation for our Au-

tomatic Data Model Mapper is presented. Section V concludes
this paper along with possible future work.

II. RELATED WORK

In this section we introduce the related works in translation
of security policy.

A. Intent-Based Cloud Services for Security Applications

J. Kim et al. [3] introduce an intent-based cloud service
(IBCS) based on automatization and virtualization as a way
of providing two assets at the same time: a virtualized security
system for the security service providers, and an easy, quick
and flexible cloud-based security service for security service
consumers based on their intents. The IBCS-based security
system consists of four steps: consumer’s intent specification,
security policy translation, the policy provisioning and, lastly,
the policy enforcement. The article demonstrates the feasibility
of the system by implementing a prototype. Our paper’s goal
is to improve the same type of system by fully automating the
second step: security policy translation. Thus, improving the
system flexibility and response against fast dynamic environ-
mental changes and decreasing human error.

B. Automata-based Security Policy Translation

J. Yang et al. [4] use Automata to help users easily use NSF
even without security knowledge. The paper constructed the
policy translator by using Automata theory for a convenient
security policy mapping management. They suggested Extrac-
tor for extracting data from the high-level policy by using
Deterministic Finite Automaton (DFA) and attached NSF
database to Data Converter for data mapping from abstract
data to specified data which is required for NSF. Lastly, they
constructed Generator for generating the low-level policies
for each target NSF by using Context-Free Grammar (CFG).
Using automata to extract data is an appropriate way to help

883

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 18,2022 at 04:52:06 UTC from IEEE Xplore. Restrictions apply.

translate high-level security policies into low-level security
policies and support security administrators, but the proposed
scheme has to map the data models manually to produce the
translation.

C. Automatic Enforcement of Security Policies in NFV Net-
works

Basile et al. [5] they proposed a component called the Se-
curity Awareness Manager (SAM) to reflect users’ intentions
from high-level security policies to low-level security policies
that respond to dynamically changing networks. The SAM is in
charge of executing the policy refinement when the network is
initialized and every time a change is detected into the network
or into the security policy.

D. Reactive Configuration Updating for Intent-Based Net-
working

Tsuzaki et al. [6] introduces a procedure to update net-
work configuration reactively in an extended NEMO (Intent-
Based Network Modeling) language. The two use cases in
[6] are automatic changing of the routing path depending
on bandwidth usage, and automatic effective utilization of
network bandwidth. It is, therefore, an example of trying
to improve the Intent-based systems by adding automating
them. In this particular case, the focus is automating the
configuration of the system against environmental changes.
Our paper, on the contrary, focuses on automating the high-
level intent translation toward a low-level security policy. This
would also, among other things, improve the system response
speed for environmental changes, since it would take less time
to fully apply the customer’s ever-changing intents.

III. POLICY MAPPING IMPLEMENTATION

A. System Architecture

The overall architecture of our scheme is shown Fig. 2.
The architecture consists of four components as proposed in
[4], i.e., Data Extractor, Data Converter, NSF Database, and
Policy Generator, with a newly added component, i.e., Data
Model Mapper. The Data Model Mapper is used to automate
the mapping between the high-level data model and the low-
level data model.

When an I2NSF User sends a high-level Policy, it is encoded
in an XML file that is based on a YANG data model to provide
a standard model for the configuration. Each of the data in the
high-level policy is contained in different XML elements to
provide the meaning of the data. Each element of the XML
has a different purpose for implementing the configuration. So
does the low-level policy, where each data to be sent needs
to be contained in the proper XML elements for the NSFs to
understand.

When translating a policy, it is necessary to know which
high-level XML element should be mapped into the low-level
XML element. Previous work performs the mapping between
elements manually. Hence, in this paper, we proposed a new
component, i.e., Data Model Mapper, into the architecture to

Security Controller

Security Policy Translator

Data

Extractor

Data

Converter

Policy

Generator

Data

Model

Mapper

NSF

Database

High-Level Data

Low-Level Data

Mapping Model

I2NSF User

High-Level Policy

NSF-NNSF-1

Low-Level Policy

…

Fig. 2. Security Policy Translator Architecture

provide an automatic mapping between the high-level element
and the low-level element.

Fig. 3 illustrates the proposed Automatic Data Model
Mapper process. The complete algorithm can be seen in the
Algorithm 1. To create a mapping model, we need the high-
level YANG data model and the low-level YANG data model
as the inputs. As a YANG data model can be represented
automatically as a simplified graphical diagram of a tree with
a software tool like "pyang" [7], we build both of the data
models into tree graphs with the relationship of a parent and
child in the tree graphs derived from the software tool. We
start mapping the Data Model from the root node of the high-
level graph as stated in Line 3 of the Algorithm 1. Then we
calculate the Tree Edit Distance between the root node of the
high-level graph with all nodes of the low-level graph. The
minimum distance indicates the mapping for the high-level
to the low-level. We start the looping for all children of the
root and create a pair for calculating the distance with each
child. The pair is obtained from the previous mapping of the
parent. This is used to reduce the number of calculations for
the distance and increases the accuracy of the mapping.

To calculate the minimum Tree Edit Distance, we use
the algorithm proposed by Zhang-Shasha [8]. The Tree Edit
Distance is obtained by calculating three operations on each

884

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 18,2022 at 04:52:06 UTC from IEEE Xplore. Restrictions apply.

OutputInput Automatic Data Model Mapper

High-Level

YANG Data Model

Low-Level

YANG Data Model

YANG Data Model

as a Tree Graph

Calculate

Minimum Tree

Edit Distance with

Zhang-Shasha

Algorithm

Break the tree into tree without

branches

0

1 2

3 4 5

0

1

3

0

1

4

0

2

5

YANG Data Model

as a Tree Graph

Break the tree into tree without

branches

0

1 2

3 4 5

0

1

3

0

1

4

0

2

5

Mapping Model

Fig. 3. Automatic Data Model Mapper Process

Algorithm 1 Automatic Data Model Mapper Algorithm
1: Inputs: High-Level Data Model (H), Low-Level Data

Model (L)
2: Tree(H), Tree(L) // Create a high-level tree graph H and

a low-level tree graph L
3: current ← H[0]
4: for i = 1 to L.length do
5: treeDist[L[i]] ← ZSS(current, L[i])) // Calculate

Tree Edit Distance
6: end for
7: map[current] ← Keys of min(treeDist)
8: for i = 1 to H.length do
9: current ← H[i]

10: pair ← map[current.parent].childs
11: for j = 0 to pair.length do
12: treeDist[pair[j]] ← ZSS(current, pair[j])
13: end for
14: map[current] ← Keys of min(treeDist) // The map-

ping uses the minimum value of Tree Edit Distances
15: end for
16: return map

step:

1) Insert: To insert a node.
2) Delete: To delete a node.
3) Change: To change the label of a node to another.

Each step will calculate the three operations and find the
minimum number that can be achieved. The insert and delete
operations can be calculated as the number of characters to
be added or removed, respectively. For calculating the change
operation, we use three string distance algorithms to find the
best formula for our model, i.e., Levenshtein Distance [9],
Cosine Similarity [10], and Sequence Matching [11].

B. Levenshtein Distance

Levenshtein Distance is a metric for measuring the edit
distance between two strings [9]. The distance is calculated
by obtaining the minimum number of single character edit
operations (i.e., insert, delete, and substitute) required to
change one string to another. The formula to calculate the
Levenshtein Distance is shown in Equation (1).

dista,b(i, j) =


max(i, j), if min(i, j) = 0,

min




dista,b(i− 1, j) + 1

dista,b(i, j − 1) + 1

dista,b(i− 1, j − 1) + 1,

otherwise,

(1)

where
a : the first string to compare,
b : the second string to compare,
i : the character position of string a, and

885

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 18,2022 at 04:52:06 UTC from IEEE Xplore. Restrictions apply.

j : the character position of string b.
To calculate the edit distance between the string a and b,

we calculate dista,b(|a|, |b|) where |a| is the length of string
a and |b| is the length of string b.

C. Cosine Similarity

Cosine similarity is a measure between two non-zero vec-
tors [10]. This technique can also be used to measure the
similarity between strings. The cosine similarity for string
is done to measure the word similarity between strings. The
equation is shown in Equation (2).

similarity(a, b) =
a.b

||a||.||b||
(2)

=

∑n
i=1 aibi√∑n

i=1 a
2
i

√∑n
i=1 b

2
i

,

where
a : the first string to compare, and
b : the second string to compare.

The result will be between 0 and 1 where 0 is no similarity
and 1 is exactly the same. To calculate it as the distance
between two strings, we derived Equation (3).

dist(a, b) = (1− similarity(a, b))× |a|. (3)

To calculate it as a distance, we reversed the result to define
0 as exactly the same and 1 as no similarity. This can be done
using 1 subtracted by the similarity. And then we calculate the
distance by multiplying it with |a|. For our model, we used the
length of a to make all of the calculations are normalized with
the same value for comparison of distances between nodes. By
using Equation (3), we can calculate the distance between two
strings for our Tree Edit Distance model.

D. Sequence Matching

Sequence Matching is a technique to compare a sequence
of strings [11]. It measures the sequences’ similarity between
two strings. The formula used in Sequence Matching is shown
in Equation (4).

similarity(a, b) =
2×M(a, b)

|a|+ |b|
, (4)

where
a : The first string to compare,
b : The second string to compare,
M(a, b) : The number of matches between A and B,
|a| : Length of a, and
|b| : Length of b.

Equation (4) results will be a ratio between 0 and 1. The
formula needed to be converted to calculate the distance.
We use a similar approach as in Equation 3 to calculate the
distance between two strings. After converting the formula,
we can calculate the distance using Sequence Matching.

IV. PERFORMANCE EVALUATION

The implementation of our model is carried out using the
Python Programming Language. We use the high-level data
model from the I2NSF Consumer-Facing Interface YANG data
model [12] and the low-level data model from the I2NSF
NSF-Facing Interface YANG data model [13]. We tested
our implementation using 3 different techniques for distance
calculation.

Fig. 4. Accuracy of Automatic Data Model Mapper

Fig. 4 shows the accuracy of our implementation. The y-
axis shows the accuracy and the x-axis shows the Tree Level
of the high-level data model. When the Tree Level is 1 to
3, i.e., the root of the Data Model, the mapping accuracy for
all of the techniques is 100%. This happens because the tree
is small and the comparison can be done easily. But when
the tree level is 4, the Cosine Similarity maintains their 100%
while the Levenshtein Distance and the Sequence Matching
lose their accuracy. The accuracy for the Levenshtein Distance
and Sequence Matching is maintained around 60% when the
tree level is at the deepest for the high-level data model.

Cosine Similarity shows the best performance for our model
to achieve 100% mapping accuracy even in the deepest tree
level. This is caused by the structure of the Data Models.
The Data Models contain similar words that can be translated.
Cosine Similarity is comparing the words on the strings, while
Levenshtein Distance and Sequence Matching are comparing
the characters. We can see that for our Data Model, the best
option is by using Cosine Similarity.

We also measure the time requirement for each technique
to get the full mapping model as shown in Fig 5. The time to
achieve the mapping model using the Levenshtein Distance is
the fastest while the Cosine Similarity and Sequence Matching
show a relatively similar processing time.

Despite the fact that the time process shows the worst
performance, the Cosine Similarity is still the better way to
map the data model as accuracy is more important in the
network security area. A wrong configuration caused by wrong
mapping can lead to a big problem in the systems.

886

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 18,2022 at 04:52:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Process Time of Automatic Data Model Mapper

The results in this performance evaluation show that the pro-
posed method can work accurately for the I2NSF environment.
Our proposed method will be able to solve the problem of
manual mapping between a high-level data model and a low-
level data model. Combined with the Automata-based Security
Policy Translation in [4], the process of translating a high-level
policy to a low-level policy can be fully automated.

V. CONCLUSION

In this paper, we provide an Automatic Data Model Mapper
to improve the existing Security Policy Translation for I2NSF
Framework. By adding our proposed component, we can auto-
matically translate a high-level security policy to a low-level
security policy without manually adding the Mapping Data
Model. We proposed a mapper by calculating the Tree Edit
Distance using the Zhang-Shasha algorithm. We implemented
3 different techniques to calculate the change operation in
the Zhang-Shasha algorithm. In the performance evaluation,
Cosine Similarity shows the best result for our Automatic Data
Model mapper. As future work, we plan to add production
rules for the Generator in the Security Policy Translator. [14]

ACKNOWLEDGMENTS

This work was supported by Institute of Information & com-
munications Technology Planning & Evaluation(IITP) grant
funded by the Ministry of Science and ICT (MSIT), Korea

(No. 2020-0-00395, Standard Development of Blockchain
based Network Management Automation Technology). This
work was supported in part by the MSIT, Korea, under
the ITRC (Information Technology Research Center) support
program (IITP-2021-2017-0-01633) supervised by the IITP.
Note that Jaehoon (Paul) Jeong is the corresponding author.

REFERENCES

[1] D. Lopez, E. Lopez, L. Dunbar, J. Strassner, and R. Kumar, “Framework
for Interface to Network Security Functions,” RFC 8329, Feb. 2018.
[Online]. Available: https://rfc-editor.org/rfc/rfc8329.txt

[2] M. Beshley, A. Pryslupskyi, O. Panchenko, and H. Beshley, “Sdn/cloud
solutions for intent-based networking,” in 2019 3rd International Con-
ference on Advanced Information and Communications Technologies
(AICT), 2019, pp. 22–25.

[3] J. Kim, E. Kim, J. Yang, J. Jeong, H. Kim, S. Hyun, H. Yang, J. Oh,
Y. Kim, S. Hares, and L. Dunbar, “Ibcs: Intent-based cloud services for
security applications,” IEEE Communications Magazine, vol. 58, no. 4,
pp. 45–51, 2020.

[4] J. Yang and J. P. Jeong, “An automata-based security policy translation
for network security functions,” in 2018 International Conference on
Information and Communication Technology Convergence (ICTC), 2018,
pp. 268–272.

[5] C. Basile, F. Valenza, A. Lioy, D. R. Lopez, and A. Pastor Perales,
“Adding support for automatic enforcement of security policies in nfv
networks,” IEEE/ACM Transactions on Networking, vol. 27, no. 2, pp.
707–720, 2019.

[6] Y. Tsuzaki and Y. Okabe, “Reactive configuration updating for intent-
based networking,” in 2017 International Conference on Information
Networking (ICOIN), 2017, pp. 97–102.

[7] M. Bjorklund, “pyang,” https://github.com/mbj4668/pyang, 2017.
[8] K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance

between trees and related problems,” SIAM J. Comput., vol. 18, pp.
1245–1262, 12 1989.

[9] V. Levenshtein, “Binary codes capable of correcting deletions, insertions,
and reversals,” Soviet physics. Doklady, vol. 10, pp. 707–710, 1965.

[10] “Cosine distance, cosine similarity, angular cosine distance, angular
cosine similarity,” Mar 2017. [Online]. Available: https://www.itl.nist.
gov/div898/software/dataplot/refman2/auxillar/cosdist.htm

[11] Python Software Foundation, “cpython,” https://github.com/python/
cpython/blob/main/Lib/difflib.py, Apr. 2020.

[12] J. P. Jeong, C. Chung, T.-J. Ahn, R. Kumar, and
S. Hares, “I2NSF Consumer-Facing Interface YANG Data
Model,” Internet Engineering Task Force, Internet-Draft draft-
ietf-i2nsf-consumer-facing-interface-dm-13, Mar. 2021, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-i2nsf-consumer-facing-interface-dm-13

[13] J. T. Kim, J. P. Jeong, P. Jung-Soo, S. Hares, and
Q. Lin, “I2NSF Network Security Function-Facing Interface
YANG Data Model,” Internet Engineering Task Force, Internet-
Draft draft-ietf-i2nsf-nsf-facing-interface-dm-12, Mar. 2021, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-i2nsf-nsf-facing-interface-dm-12

[14] J. P. Jeong, P. Lingga, S. Hares, L. Xia, and H. Birkholz, “I2NSF
NSF Monitoring Interface YANG Data Model,” Sep. 2021, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-i2nsf-nsf-monitoring-data-model-10

887

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 18,2022 at 04:52:06 UTC from IEEE Xplore. Restrictions apply.

