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Abstract—As Computer Science has grown into an encom-
passed field in various scientific areas, the need for developing
a computer aided and artificially intelligent device has become
more important especially in the medical field. Artificial In-
telligence (AI) plays a vital role not only in accelerating and
optimizing common tasks but also in performing tasks that
humans are incapable of. This paper presents a Myo Armband
Sign-Language Translator (MAST), which is a novel algorithm
to translate a hand’s gestures into medical sign language using a
Myo armband sensor which collects muscles’ electromyography
signals and then to classify them using an enhanced version
of a dynamic random forest. Our experimental results indicate
that a systematic fine tuning of MAST parameters leads to an
accuracy improvement of 13% over the state-of-the-art scheme
such as SCIKIT’s random forest. Other comparison results show
an improvement of over 20% compared to a popular classification
scheme such as Support Vector Machines (SVM) and a deep
learning technique such as Convolutional Neural Network (CNN).

Index Terms—Electromyography, Myo Armband, Sign-
language Translator, Random Forest, Support Vector Machine,
Convolutional Neural Network

I. INTRODUCTION

Over the course of the last couple of years, there has been
a significant increase in the abundant input and interaction
devices with computers. The core role of such devices is to
bring a technology closer to the reality and to perform hard
or even seemingly impossible tasks in the past. Moreover,
there has been ongoing research in gesture recognition for
hearing-impaired and mute people which takes advantage of
such input gadgets to attain high accuracy while maximizing
the convenience for the users [1].

Since mute individuals have communication problems while
dealing with other people and they basically rely on gestures to
communicate every day, it is essential to classify hand gestures
into written text so that the communication becomes compre-
hensible. To carry out such classification, the fundamental step
is to get raw data from hand gestures and feed it into computer
systems and this data can be gathered from data gloves,
vision and image-based system, and electromyogram (EMG)
sensors [2]. Electromyography is a technique for assessing and
recording the electrical activity produced by skeletal muscle
contractions. That is, EMG signals show the activity level of
a specific muscle and these bio-electric signals can be picked
up using sensors attached to the body like Myo armband [3].
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This paper proposes a Myo Armband Sign-Language Trans-
lator (MAST) that is a classifier which classifies EMG signals
corresponding to medical sign language retrieved from Myo
armband into written text. The EMG raw data can be collected,
featured using linear discriminant analysis, and finally used as
an input for a novel dynamic random forest classifier for our
MAST. The Random Forest (RF) algorithms form a family of
classification methods that rely on the combination of several
decision trees such that each decision tree contributes to the
final ensemble and voting scheme. Even though there are a
lot of deep learning and machine learning techniques that
have been used in the past, to the best of our knowledge,
this paper is the first work that tackles the recognition of
medical sign language using a dynamic random forest. The
main contributions of this paper that make our MAST novel
when compared to previous schemes are listed as follows:

o An optimized version of a dynamic random forest which
outperforms the state-of-the-art such as SCIKIT’s imple-
mentation and also outperforms a machine learning (i.e.,
SVM) and a deep learning technique (i.e., CNN);

e A linear discriminant analysis scheme to feature EMG
signals;

o A practical and an easily trainable architecture for clas-
sifying EMG signals into hand gestures, which can be
used in any relevant field.

The remainder of this paper is composed as follows. Section

I summarizes the related work of hand gesture classification.
Section III describes our MAST architecture, implementation,
and key features. In Section IV, the performance evaluation
is presented for our MAST and other baselines. Section V
concludes this paper along with future work.

II. RELATED WORK

This section describes the related work that has been done
in this area in a more systematic way. It is essential to mention
that most of the research which has targeted this field is
either dependent on Statistical Machine Translation (SMT)
or a deep learning approach. Thus, it is really important to
describe those mechanisms before diving into the details of the
papers that are based on them. First of all, SMT is regarded
as a sub-field of natural language processing that investigates
how to automatically translate text or speech across human
languages using probabilistic models from parallel corpora,
and hence it needs a large volume of training data to build
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such probabilistic models [4]. On the other hand, Computer
Vision-based systems focus on capturing images and then they
classify those images into objects using different CNN models
[5].

The work proposed in [6] is one of the most notable
works in this area in which the authors propose a custom
sign language translation system that uses a specialized glove
programmed with an SMT algorithm to translate 20 gestures
into 20 English letters with an accuracy of 96%. Although the
accuracy of this scheme is high, the practicality of using such
a glove is debatable since it is only able to translate limited
English letters rather than actual phrases or words, so it is not
cost-efficient if it is used in practical situations.

Another interesting paper suggested in [7] shows a deep
learning approach in which the authors relied on CNN based
models to first remove the the background scene from hand
gestures’ images, extract the boundaries of the hands, and
finally classify the gestures based on these boundaries. On
the other hand, this approach has three main limitations:

o The impracticality of translating a hand’s gestures to
English letters rather than more useful words or phrases.

o The high latency due to the workflow of the suggested
architecture where pictures are first captured, are stored,
and then a CNN model is applied.

o The requirement of having a high-resolution image under
specific lighting conditions for guaranteeing better results.

Compared to the previously mentioned papers, MAST has a
higher accuracy compared to other Computer Vision-based
proposed techniques as our approach uses Myo armband which
accurately senses muscles’ EMG signals regardless of the
environment or lighting conditions. Moreover, the machine
learning model utilized by MAST is an enhanced version of
a dynamic random forest which does not need a large amount
of data for training and getting accurate results.

On the other side of the spectrum, the usability of the
previously proposed techniques is limited in the real-world and
are only helpful for people who are familiar with a targeted
sign language. In our approach, instead of focusing on a single
limited language, we are trying to build a more comprehensive
and high-accuracy general translation system which can be
trained with any number and type of gestures of non-expert
users. In our experiments, we focused on the medical field
related gestures which can be used in smart hospitals equipped
with Myo armbands, which can help any mute person to
easily use the configured and trained gestures to converse with
medical doctors.

III. MAST IMPLEMENTATION
A. Dataset Details

As mentioned previously, we focused on a medical field
related hand gestures. Therefore, for this implementation, we
chose 10 gestures from the American Sign Language (ASL)
which has some medical meaning. Note that the Myo armband
sensor does not have a gyroscope, thus we modified the
original sign language for gestures which only consist of finger

movements. Furthermore, to achieve a higher classification
accuracy, we have stretched the fingers’ motions compared
to the original ASL gestures. As shown in Fig. 1. the gestures
are comprehensible enough for the communication between
patients and doctors (or nurses). Although the chosen gestures
are translated into words rather than phrases, the patients can
combine a subset of these gestures to converse with the doctors
easily. For example, when a patient wants to express a “pain
in the neck” to get a nurse’s attention, (s)he can just use “Pain
in neck” followed by “Nurse” gestures.

L kP i

[Headache] [Nurse]

[Wheelchair] [Test]

[Injection] [Blood Pressure] <Hearing - Aid>

[Pain in neck] [Prescription] [Surgery]

Fig. 1. 10 Gestures for Medical Sign Language

B. Random Forest Algorithm

The Random Forest (RF) algorithms form a family of
classification methods that rely on the combination of several
decision trees. The particularity of such Ensembles of Classi-
fiers (EoC) is that their tree-based components are grown from
a certain amount of randomness. Based on this idea, an RF
is defined as a general principle of randomized ensembles of
decision trees. Although an RF was developed in the 1990s,
a formal definition of an RF was introduced in 2001 by Leo
Breiman as follows [8]:

Theorem 1: A random forest is a classifier consisting of a
collection of tree-structured classifiers h(x,O),k = 1,..., L
where x is an input vector and ©’s for £k = 1,...,L are
independent and identically distributed random vectors and
where each k-th tree for h(z,©y) casts a unit vote for the
most popular class at input z.

In Breiman’s RF definition, there are two randomization
principles: Bagging and Random Feature Selection (RFS).
Bagging is a training algorithm for an RF which applies
the general technique of bootstrap aggregating to individual
decision trees. Given a training set, bagging repeatedly selects
a random sample of the training set and fits trees to these
samples. RFS randomly selects for each of those trees a subset
of features that will be withdrawn for the bagging operation.

An RF has several advantages for the classification of
electromyogram data. First, an RF can train a model with a
relatively small number of samples and get a higher accuracy
compared to other algorithms. Due to the fact that building
a large electromyogram dataset is hard, the classifier needs
to perform classification with a small number of samples.
Second, an RF has an effective method for estimating missing
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data or features and maintains a high accuracy even if a
large proportion of the data is missing. Third, an RF involves
sampling of the input data with replacement, which is also
known as bootstrap sampling, in the training phase. Thus, one-
third of the original dataset is not used for training and can be
used for testing. The testing set is called Out Of Bag (OOB).
The whole algorithm’s pseudocode to generate a classifier with
n decision trees (estimators) is described in Algorithm 1.

Algorithm 1 Random Forest Algorithm
1: procedure CLASSICAL_RANDOM_FOREST(D)
Generate a classifier with n estimators
141
while 7 < n do
Randomly sample the training data D with replace-
ment to produce D;
Create a root node /N; containing D;
Call Build_Tree(N;, D;)
14— 1+1
end while
10: end procedure

0L PR

1: procedure BUILD_TREE(/N, D)

2: if NV contains instances of only one class then

3: return

4 else

5: Randomly select  percent of the possible splitting
features in NV

6: Select a feature vector F' with the highest infor-
mation gain by splitting

7: Create f child nodes of Ni,..., Ny where I is a

feature vector with f possible values (Fi, ..., Fy)
8: 141
: while i < f do
10: set the contents of N; to D; where D; is all

instances in N that match
11: Call Buil_Tree(N;, D;)
12: 14—1+1
13: end while
14: end if

15: end procedure

In Algorithm 1, Build_Tree(N, D) has the time complex-
ity of O(lg(n)) and the while loop for the index ¢ (from 1
up to n) in Classical_Random_Forest(D) has the time
complexity of O(n - v) without Build_Tree(N, D) since
the loop is iterated n times and in each loop, v features
are sampled from the dataset. Thus, the total complexity of
Algorithm 1 is O(v - n - lg(n)).

C. MAST Architecture

The EMG data used in this paper is obtained by Myo
armband. Myo armband is an electromyogram sensor with 8
sensing parts made by Thalmic Labs [9]. In our dataset, one
EMG raw data is collected by Myo armband and hence fed to
our algorithm which first finds distinct features of the raw data.
These features are calculated through a linear discriminant

analysis method with 6 mathematical formulas such as rms
(root mean square), iav (sum of absolute value), ssi (square
value), var (average of ssi), wl (sum of the distance between
two adjacent EMG data), aac (average of wl) [3].

There are two parts of MAST such as Trainer and Translator
Interfaces. We created a very simple and user-friendly trainer
interface that can be used by non-expert users to train EMG
data with any type and number of gestures. In the trainer sec-
tion, EMG data is captured at 200Hz by MyoDeuviceListner
which is offered by the official SDK. After capturing raw
EMG data, a trainer calculates each gesture’s EMG data
features with formulas mentioned above and creates a csv
file using Pandas, which is a Python data analysis library. In
the translator section, a translator loads a csv file stored in
the trainer section and fits the model with the data. Before
fitting the data, However, EMG data is preprocessed for both
boosting and normalization by an algorithm called Adaboost.
After building the model, the translator captures the user’s real-
time raw EMG data and predicts the gesture. Fig. 2 shows the
full architecture.

MyoDevicelListner

Raw EMG data ¢

(Training) .
Make csv file

Trainer

Real time EMG data
(Translating)

Load csv file

Myo Sensor

Boost the data

¥
Fitting Model and
Translating

Translator

Fig. 2. MAST Architecture

D. MAST’s Dynamic Random Forest

To improve performance, MAST uses a Dynamic Random
Forest (DRF) method [10]. A classical Random Forest (RF)
does not ensure that all trees contribute to the performance
of a forest because it selects trees randomly. In contrast, a
DRF guides the newly added tree to complement the existing
trees as much as possible. That is, it is based on a sequential
procedure that builds an ensemble of random trees by making
each one of them dependent on the previous ones. In detail,
a DRF chooses trees according to the predictions given by
all the trees already added to the forest. The predictions
are evaluated by the prediction ratio which is W (C(pt, st))
where C(pt, st) is a contribution rate between the previous

496

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 18,2022 at 04:52:35 UTC from IEEE Xplore. Restrictions apply.



trees (pt) and newly selected tree (st). This ratio is defined by:

C(pt, st) |D00b‘ Z Count(st(D;) == pt(D;)). (1)

D;EDgop

In Equation (1), D indicates a sample of data and oob stands
for Out-Of-Bag data. That is, we first create a set of called
D,.p, which consists of new data that have not been used in
the generation of any decision tree existing in the random
forest. These oob new data act as an indicator whether the
newly selected tree st is useful or not. We can analyze the
newly selected tree by counting how many times its prediction
st(D;) for a sample D; from D,,, matched the prediction
of the previously selected trees in the forest pt(D;). The
lower the value of C(pt, st) is, the more the next tree will
have to focus on the instance pt since it means that it was
incorrectly classified by a large number of trees in the current
forest. Consequently, the weight of st has to decrease with
respect to C(pt, st). In MAST’s RF, we used the following
weighting function: W (C(pt, st)) = 1 — C(pt, st). With the
DRF method, MAST’s RF selects higher performance trees
and attains a better accuracy compared to a classical RF which
selects trees randomly without considering whether the added
trees are useful or not. The whole algorithm of MAST’s RF
is described in Algorithm 2.

In Algorithm 2, Build_Tree(N,D) has the time com-
plexity of O(lg(n)) if the time complexity of C(pt,st)
(i.e., O(]Doop|)) in (1) is less than or equal to O(lg(n)).
The while loop for the index ¢ (from 1 up to m) in
MAST _Random_Forest(D) has the time complexity of
O(n-v) without Build_Tree(N, D) since the loop is iterated
n times and in each loop, v features are sampled from
the dataset. Thus, the total complexity of Algorithm 2 is

O -n-lg(n)).
IV. PERFORMANCE EVALUATION
A. MAST Random Forest vs. SCIKIT Random Forest

As mentioned previously in Section III-A, the gestures on
which we evaluated our MAST are 10 medical gestures from
the American Sign Language for which we compared the
performance of our MAST’s Random Forest against the state-
of-the-art scheme such as SCIKIT’s implementation. To carry
out this comparison, we created a customized dataset for these
gestures using the trainer interface mentioned in Section III-C,
and to be more specific, we created a dataset by training each
gesture for 30 iterations.

Fig. 3 shows the comparison between MAST and SCIKIT
based on the number of the decision trees in the random
forest, which is also known as the number of estimators.
The reason we settled with a maximum of 25 estimators is
due to the fact of no further accuracy improvement for both
techniques. Noticeably, MAST achieves a higher accuracy than
SCIKIT regardless of the number of estimators. That is, the
low accuracy of SCIKIT can be explained by the way it works
such that it selects all of its decision trees totally randomly.

Algorithm 2 MAST Random Forest Algorithm
1: procedure MAST_RANDOM_FOREST(D)

2: Generate a classifier with n estimators

3 141

4: while : < n do

5 Randomly sample the training data D with replace-

ment to produce D;
Create a root node N, containing D;
Call Build_Tree(N;, D;)
1 1+1
end while
10: end procedure

© e 3D

1: procedure BUILD_TREE(N, D)

2: if V contains instances of only one class then

3: return

4: else

5: Calculate C(pt, st)

6: W(C(pt,st)) =1— C(pt, st)

7: Select a feature vector F' with the highest infor-
mation gain by splitting

8: Create f child nodes of Ni,..., Ny where F'is a
feature vector with f possible values (Fi, ..., Fy)

9: 14+ 1

10: while i < f do

11: if OOBTrees(pt) # () then

12: Di+1 = W(C(pt, St))

13: else

14: D1'+1 =D,

15: end if

16: Call Build_Tree(N;, D;)

17: 1+ i+1

18: end while

19: end if

20: end procedure

On the other hand, MAST achieves better results since it takes
a preliminary decision before adding the tree to the random
forest.

In addition, Fig. 4 shows another comparison based on the
number of gestures to be classified. Although the accuracy
between the two models is not differentiable in classifying a
small number of gestures, MAST’s accuracy is higher than
SCIKIT in a greater number of gestures and has a negligible
error. This result proves that MAST is a practical solution for
practical scenarios where the number of classified gestures is
big.

B. MAST Random Forest vs. CNN Model

To evaluate our MAST and benchmark it against another
commonly used technique in sign language translation, an
efficient deep learning model was designed to classify the
same gestures. Since there are a lot of deep learning models
for image classification, we chose one of the most popular
models such as ResNet-18 along with applying SeNet to it

[11], [12].
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Fig. 4. Model Accuracy Based on the Number of Gestures

The data used for the experiment were the same gestures
used to train MAST, but instead of EMG signals, images
of the gestures were fed to the network. Each gesture class
in the dataset had 300 images of size (112*112) and the
whole dataset had a total of 3000 images. The model was
trained using a single NVIDIA Tesla K80 and 24GB RAM.
The validation results show that the model reached around
74.6% after 30 epochs. There are two distinct differences that
make MAST clearly outperform the CNN implementation.
First of all, MAST can achieve a top accuracy of 95% on
the test data while the CNN implementation can only reach
74.6%. The second difference is training time, while MAST
only needs 3~6 seconds to train, the CNN implementation
takes around 2 hours to train for 30 epochs on the machine
specifications mentioned above. It might be argued that using
a better GPU would decrease the training time, thus more
training epochs can be performed. Although it may sound
right, this is not the case. Our experimental results show that
the CNN implementation cannot achieve higher than 74.6%
accuracy regardless of the training time since it starts to overfit
the training data, making the network perform worse on the
validation data, as shown in Fig. 5. Note that the following
figure ignores the error bars since the deviation in the results
of all trials was less 0.9, therefore errors bars are negligible.

92%

91%

60%

Accuracy

40%

20%

0%

0 12 2 36 48 60 72 84 96 108 120 132 144
Time(Minutes)
e MASTamm CNN

Fig. 5. MAST vs. CNN in Accuracy

C. MAST’s Random Forest vs. SVM

To carry out this evaluation, we took the same approach that
we used to compare MAST and SCIKIT. That is, we created a
customized dataset for the gestures using the trainer interface,
and hence we built a dataset by training each gesture for 30
iterations. Fig. 6 shows the gap in the performance between
SVM which achieves a top accuracy of 58.8% compared to
MAST’s top 93% accuracy. Note that the state-of-the-art SVM
implementation by SCIKIT was used and training for further
time did not improve the accuracy for either of the techniques.

120

100 904 918 93

.'_\Sif__.———{»———i
80
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60

Accuracy %

40 3d6

20

0 20 40 60 80 100 120 140
Time (Seconds)
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Fig. 6. MAST vs. SVM in Accuracy

V. CONCLUSION

This paper proposes a Myo Armband Sign-Language Trans-
lator (MAST), which is a novel algorithm for efficient sign
language translation. MAST outperforms a popular deep learn-
ing technique such as CNN and a machine learning technique
such as SVM. This is because MAST can accurately recognize
different gestures with high generalization capacity when it
is compared with CNN, SVM, and classical random forest
techniques. However, since MAST can only recognize gestures

498

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 18,2022 at 04:52:35 UTC from IEEE Xplore. Restrictions apply.



without taking into consideration the facial expressions which
are important part of the sign language, the improvement of
our work can be done by integrating face recognition models
into MAST in order to provide a more accurate translation.
Moreover, this opens a new door of research on not only
using MAST in sign language translation but also utilizing
the proposed dynamic random forest in any other machine
learning regression or classification tasks. This is because
MAST’s random forest is marginally better than the popular
SCIKIT’s random forest. As future work, we will work on the
fusion of MAST and a face recognition model for a better sign-
language translation. Also, we will apply our dynamic random
forest to the regression and classification in other domains.
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